Enter a problem...
Algebra Examples
(x+2)6(x+2)6
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an-kbk)(a+b)n=n∑k=0nCk⋅(an−kbk).
6∑k=06!(6-k)!k!⋅(x)6-k⋅(2)k6∑k=06!(6−k)!k!⋅(x)6−k⋅(2)k
Step 2
Expand the summation.
6!(6-0)!0!(x)6-0⋅(2)0+6!(6-1)!1!(x)6-1⋅(2)1+…+6!(6-6)!6!(x)6-6⋅(2)66!(6−0)!0!(x)6−0⋅(2)0+6!(6−1)!1!(x)6−1⋅(2)1+…+6!(6−6)!6!(x)6−6⋅(2)6
Step 3
Simplify the exponents for each term of the expansion.
1⋅(x)6⋅(2)0+6⋅(x)5⋅(2)1+…+1⋅(x)0⋅(2)61⋅(x)6⋅(2)0+6⋅(x)5⋅(2)1+…+1⋅(x)0⋅(2)6
Step 4
Simplify the polynomial result.
x6+12x5+60x4+160x3+240x2+192x+64x6+12x5+60x4+160x3+240x2+192x+64