Algebra Examples

Expand Using the Binomial Theorem (x+2)^6
(x+2)6(x+2)6
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=nk=0nCk(an-kbk)(a+b)n=nk=0nCk(ankbk).
6k=06!(6-k)!k!(x)6-k(2)k6k=06!(6k)!k!(x)6k(2)k
Step 2
Expand the summation.
6!(6-0)!0!(x)6-0(2)0+6!(6-1)!1!(x)6-1(2)1++6!(6-6)!6!(x)6-6(2)66!(60)!0!(x)60(2)0+6!(61)!1!(x)61(2)1++6!(66)!6!(x)66(2)6
Step 3
Simplify the exponents for each term of the expansion.
1(x)6(2)0+6(x)5(2)1++1(x)0(2)61(x)6(2)0+6(x)5(2)1++1(x)0(2)6
Step 4
Simplify the polynomial result.
x6+12x5+60x4+160x3+240x2+192x+64x6+12x5+60x4+160x3+240x2+192x+64
 [x2  12  π  xdx ]  x2  12  π  xdx