Enter a problem...
Algebra Examples
logx(32)=5logx(32)=5
Step 1
Rewrite logx(32)=5logx(32)=5 in exponential form using the definition of a logarithm. If xx and bb are positive real numbers and b≠1b≠1, then logb(x)=ylogb(x)=y is equivalent to by=xby=x.
x5=32x5=32
Step 2
Step 2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=5√32x=5√32
Step 2.2
Simplify 5√325√32.
Step 2.2.1
Rewrite 3232 as 2525.
x=5√25x=5√25
Step 2.2.2
Pull terms out from under the radical, assuming real numbers.
x=2x=2
x=2x=2
x=2x=2