Enter a problem...
Algebra Examples
Step 1
Step 1.1
Rewrite as .
Step 1.2
Let . Substitute for all occurrences of .
Step 1.3
Factor using the AC method.
Step 1.3.1
Consider the form . Find a pair of integers whose product is and whose sum is . In this case, whose product is and whose sum is .
Step 1.3.2
Write the factored form using these integers.
Step 1.4
Replace all occurrences of with .
Step 2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 3
Step 3.1
Set equal to .
Step 3.2
Solve for .
Step 3.2.1
Add to both sides of the equation.
Step 3.2.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 3.2.3
Expand the left side.
Step 3.2.3.1
Expand by moving outside the logarithm.
Step 3.2.3.2
The natural logarithm of is .
Step 3.2.3.3
Multiply by .
Step 4
Step 4.1
Set equal to .
Step 4.2
Solve for .
Step 4.2.1
Add to both sides of the equation.
Step 4.2.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 4.2.3
Expand the left side.
Step 4.2.3.1
Expand by moving outside the logarithm.
Step 4.2.3.2
The natural logarithm of is .
Step 4.2.3.3
Multiply by .
Step 4.2.4
The natural logarithm of is .
Step 5
The final solution is all the values that make true.
Step 6
The result can be shown in multiple forms.
Exact Form:
Decimal Form: