Enter a problem...
Algebra Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Subtract from both sides of the equation.
Step 2
Reorder terms.
Step 3
Step 3.1
Group the first two terms and the last two terms.
Step 3.2
Factor out the greatest common factor (GCF) from each group.
Step 4
Factor the polynomial by factoring out the greatest common factor, .
Step 5
Rewrite as .
Step 6
Rewrite as .
Step 7
Step 7.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 7.2
Remove unnecessary parentheses.
Step 8
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 9
Step 9.1
Set equal to .
Step 9.2
Solve for .
Step 9.2.1
Add to both sides of the equation.
Step 9.2.2
Divide each term in by and simplify.
Step 9.2.2.1
Divide each term in by .
Step 9.2.2.2
Simplify the left side.
Step 9.2.2.2.1
Dividing two negative values results in a positive value.
Step 9.2.2.2.2
Divide by .
Step 9.2.2.3
Simplify the right side.
Step 9.2.2.3.1
Divide by .
Step 10
Step 10.1
Set equal to .
Step 10.2
Solve for .
Step 10.2.1
Subtract from both sides of the equation.
Step 10.2.2
Divide each term in by and simplify.
Step 10.2.2.1
Divide each term in by .
Step 10.2.2.2
Simplify the left side.
Step 10.2.2.2.1
Cancel the common factor of .
Step 10.2.2.2.1.1
Cancel the common factor.
Step 10.2.2.2.1.2
Divide by .
Step 10.2.2.3
Simplify the right side.
Step 10.2.2.3.1
Move the negative in front of the fraction.
Step 11
Step 11.1
Set equal to .
Step 11.2
Solve for .
Step 11.2.1
Add to both sides of the equation.
Step 11.2.2
Divide each term in by and simplify.
Step 11.2.2.1
Divide each term in by .
Step 11.2.2.2
Simplify the left side.
Step 11.2.2.2.1
Cancel the common factor of .
Step 11.2.2.2.1.1
Cancel the common factor.
Step 11.2.2.2.1.2
Divide by .
Step 12
The final solution is all the values that make true.