Algebra Examples

Expand Using the Binomial Theorem (x-1)^4
(x-1)4(x1)4
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=nk=0nCk(an-kbk)(a+b)n=nk=0nCk(ankbk).
4k=04!(4-k)!k!(x)4-k(-1)k4k=04!(4k)!k!(x)4k(1)k
Step 2
Expand the summation.
4!(4-0)!0!(x)4-0(-1)0+4!(4-1)!1!(x)4-1(-1)1+4!(4-2)!2!(x)4-2(-1)2+4!(4-3)!3!(x)4-3(-1)3+4!(4-4)!4!(x)4-4(-1)44!(40)!0!(x)40(1)0+4!(41)!1!(x)41(1)1+4!(42)!2!(x)42(1)2+4!(43)!3!(x)43(1)3+4!(44)!4!(x)44(1)4
Step 3
Simplify the exponents for each term of the expansion.
1(x)4(-1)0+4(x)3(-1)1+6(x)2(-1)2+4(x)1(-1)3+1(x)0(-1)41(x)4(1)0+4(x)3(1)1+6(x)2(1)2+4(x)1(1)3+1(x)0(1)4
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (x)4(x)4 by 11.
(x)4(-1)0+4(x)3(-1)1+6(x)2(-1)2+4(x)1(-1)3+1(x)0(-1)4(x)4(1)0+4(x)3(1)1+6(x)2(1)2+4(x)1(1)3+1(x)0(1)4
Step 4.2
Anything raised to 00 is 11.
x41+4(x)3(-1)1+6(x)2(-1)2+4(x)1(-1)3+1(x)0(-1)4x41+4(x)3(1)1+6(x)2(1)2+4(x)1(1)3+1(x)0(1)4
Step 4.3
Multiply x4x4 by 11.
x4+4(x)3(-1)1+6(x)2(-1)2+4(x)1(-1)3+1(x)0(-1)4x4+4(x)3(1)1+6(x)2(1)2+4(x)1(1)3+1(x)0(1)4
Step 4.4
Evaluate the exponent.
x4+4x3-1+6(x)2(-1)2+4(x)1(-1)3+1(x)0(-1)4x4+4x31+6(x)2(1)2+4(x)1(1)3+1(x)0(1)4
Step 4.5
Multiply -11 by 44.
x4-4x3+6(x)2(-1)2+4(x)1(-1)3+1(x)0(-1)4x44x3+6(x)2(1)2+4(x)1(1)3+1(x)0(1)4
Step 4.6
Raise -11 to the power of 22.
x4-4x3+6x21+4(x)1(-1)3+1(x)0(-1)4x44x3+6x21+4(x)1(1)3+1(x)0(1)4
Step 4.7
Multiply 66 by 11.
x4-4x3+6x2+4(x)1(-1)3+1(x)0(-1)4x44x3+6x2+4(x)1(1)3+1(x)0(1)4
Step 4.8
Simplify.
x4-4x3+6x2+4x(-1)3+1(x)0(-1)4x44x3+6x2+4x(1)3+1(x)0(1)4
Step 4.9
Raise -11 to the power of 33.
x4-4x3+6x2+4x-1+1(x)0(-1)4x44x3+6x2+4x1+1(x)0(1)4
Step 4.10
Multiply -11 by 44.
x4-4x3+6x2-4x+1(x)0(-1)4x44x3+6x24x+1(x)0(1)4
Step 4.11
Multiply (x)0(x)0 by 11.
x4-4x3+6x2-4x+(x)0(-1)4x44x3+6x24x+(x)0(1)4
Step 4.12
Anything raised to 00 is 11.
x4-4x3+6x2-4x+1(-1)4x44x3+6x24x+1(1)4
Step 4.13
Multiply (-1)4(1)4 by 11.
x4-4x3+6x2-4x+(-1)4x44x3+6x24x+(1)4
Step 4.14
Raise -11 to the power of 44.
x4-4x3+6x2-4x+1x44x3+6x24x+1
x4-4x3+6x2-4x+1x44x3+6x24x+1
 [x2  12  π  xdx ]  x2  12  π  xdx