Enter a problem...
Algebra Examples
(x-1)4(x−1)4
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an-kbk)(a+b)n=n∑k=0nCk⋅(an−kbk).
4∑k=04!(4-k)!k!⋅(x)4-k⋅(-1)k4∑k=04!(4−k)!k!⋅(x)4−k⋅(−1)k
Step 2
Expand the summation.
4!(4-0)!0!(x)4-0⋅(-1)0+4!(4-1)!1!(x)4-1⋅(-1)1+4!(4-2)!2!(x)4-2⋅(-1)2+4!(4-3)!3!(x)4-3⋅(-1)3+4!(4-4)!4!(x)4-4⋅(-1)44!(4−0)!0!(x)4−0⋅(−1)0+4!(4−1)!1!(x)4−1⋅(−1)1+4!(4−2)!2!(x)4−2⋅(−1)2+4!(4−3)!3!(x)4−3⋅(−1)3+4!(4−4)!4!(x)4−4⋅(−1)4
Step 3
Simplify the exponents for each term of the expansion.
1⋅(x)4⋅(-1)0+4⋅(x)3⋅(-1)1+6⋅(x)2⋅(-1)2+4⋅(x)1⋅(-1)3+1⋅(x)0⋅(-1)41⋅(x)4⋅(−1)0+4⋅(x)3⋅(−1)1+6⋅(x)2⋅(−1)2+4⋅(x)1⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4
Step 4.1
Multiply (x)4(x)4 by 11.
(x)4⋅(-1)0+4⋅(x)3⋅(-1)1+6⋅(x)2⋅(-1)2+4⋅(x)1⋅(-1)3+1⋅(x)0⋅(-1)4(x)4⋅(−1)0+4⋅(x)3⋅(−1)1+6⋅(x)2⋅(−1)2+4⋅(x)1⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4.2
Anything raised to 00 is 11.
x4⋅1+4⋅(x)3⋅(-1)1+6⋅(x)2⋅(-1)2+4⋅(x)1⋅(-1)3+1⋅(x)0⋅(-1)4x4⋅1+4⋅(x)3⋅(−1)1+6⋅(x)2⋅(−1)2+4⋅(x)1⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4.3
Multiply x4x4 by 11.
x4+4⋅(x)3⋅(-1)1+6⋅(x)2⋅(-1)2+4⋅(x)1⋅(-1)3+1⋅(x)0⋅(-1)4x4+4⋅(x)3⋅(−1)1+6⋅(x)2⋅(−1)2+4⋅(x)1⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4.4
Evaluate the exponent.
x4+4x3⋅-1+6⋅(x)2⋅(-1)2+4⋅(x)1⋅(-1)3+1⋅(x)0⋅(-1)4x4+4x3⋅−1+6⋅(x)2⋅(−1)2+4⋅(x)1⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4.5
Multiply -1−1 by 44.
x4-4x3+6⋅(x)2⋅(-1)2+4⋅(x)1⋅(-1)3+1⋅(x)0⋅(-1)4x4−4x3+6⋅(x)2⋅(−1)2+4⋅(x)1⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4.6
Raise -1−1 to the power of 22.
x4-4x3+6x2⋅1+4⋅(x)1⋅(-1)3+1⋅(x)0⋅(-1)4x4−4x3+6x2⋅1+4⋅(x)1⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4.7
Multiply 66 by 11.
x4-4x3+6x2+4⋅(x)1⋅(-1)3+1⋅(x)0⋅(-1)4x4−4x3+6x2+4⋅(x)1⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4.8
Simplify.
x4-4x3+6x2+4⋅x⋅(-1)3+1⋅(x)0⋅(-1)4x4−4x3+6x2+4⋅x⋅(−1)3+1⋅(x)0⋅(−1)4
Step 4.9
Raise -1−1 to the power of 33.
x4-4x3+6x2+4x⋅-1+1⋅(x)0⋅(-1)4x4−4x3+6x2+4x⋅−1+1⋅(x)0⋅(−1)4
Step 4.10
Multiply -1−1 by 44.
x4-4x3+6x2-4x+1⋅(x)0⋅(-1)4x4−4x3+6x2−4x+1⋅(x)0⋅(−1)4
Step 4.11
Multiply (x)0(x)0 by 11.
x4-4x3+6x2-4x+(x)0⋅(-1)4x4−4x3+6x2−4x+(x)0⋅(−1)4
Step 4.12
Anything raised to 00 is 11.
x4-4x3+6x2-4x+1⋅(-1)4x4−4x3+6x2−4x+1⋅(−1)4
Step 4.13
Multiply (-1)4(−1)4 by 11.
x4-4x3+6x2-4x+(-1)4x4−4x3+6x2−4x+(−1)4
Step 4.14
Raise -1−1 to the power of 44.
x4-4x3+6x2-4x+1x4−4x3+6x2−4x+1
x4-4x3+6x2-4x+1x4−4x3+6x2−4x+1