Algebra Examples

Graph y=-3/2x^3
y=-32x3y=32x3
Step 1
Find the point at x=-2x=2.
Tap for more steps...
Step 1.1
Replace the variable xx with -22 in the expression.
f(-2)=-3(-2)32f(2)=3(2)32
Step 1.2
Simplify the result.
Tap for more steps...
Step 1.2.1
Cancel the common factor of (-2)3(2)3 and 22.
Tap for more steps...
Step 1.2.1.1
Rewrite -22 as -1(2)1(2).
f(-2)=-3(-12)32f(2)=3(12)32
Step 1.2.1.2
Apply the product rule to -1(2)1(2).
f(-2)=-3((-1)323)2f(2)=3((1)323)2
Step 1.2.1.3
Raise -11 to the power of 33.
f(-2)=-3(-123)2f(2)=3(123)2
Step 1.2.1.4
Factor 22 out of 3(-123)3(123).
f(-2)=-2(3(-122))2f(2)=2(3(122))2
Step 1.2.1.5
Cancel the common factors.
Tap for more steps...
Step 1.2.1.5.1
Factor 22 out of 22.
f(-2)=-2(3(-122))2(1)f(2)=2(3(122))2(1)
Step 1.2.1.5.2
Cancel the common factor.
f(-2)=-2(3(-122))21
Step 1.2.1.5.3
Rewrite the expression.
f(-2)=-3(-122)1
Step 1.2.1.5.4
Divide 3(-122) by 1.
f(-2)=-(3(-122))
f(-2)=-(3(-122))
f(-2)=-(3(-122))
Step 1.2.2
Raise 2 to the power of 2.
f(-2)=-(3(-14))
Step 1.2.3
Multiply -(3(-14)).
Tap for more steps...
Step 1.2.3.1
Multiply -1 by 4.
f(-2)=-(3-4)
Step 1.2.3.2
Multiply 3 by -4.
f(-2)=12
Step 1.2.3.3
Multiply -1 by -12.
f(-2)=12
f(-2)=12
Step 1.2.4
The final answer is 12.
12
12
Step 1.3
Convert 12 to decimal.
y=12
y=12
Step 2
Find the point at x=0.
Tap for more steps...
Step 2.1
Replace the variable x with 0 in the expression.
f(0)=-3(0)32
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Raising 0 to any positive power yields 0.
f(0)=-302
Step 2.2.2
Multiply 3 by 0.
f(0)=-02
Step 2.2.3
Divide 0 by 2.
f(0)=-0
Step 2.2.4
Multiply -1 by 0.
f(0)=0
Step 2.2.5
The final answer is 0.
0
0
Step 2.3
Convert 0 to decimal.
y=0
y=0
Step 3
Find the point at x=2.
Tap for more steps...
Step 3.1
Replace the variable x with 2 in the expression.
f(2)=-3(2)32
Step 3.2
Simplify the result.
Tap for more steps...
Step 3.2.1
Cancel the common factor of (2)3 and 2.
Tap for more steps...
Step 3.2.1.1
Factor 2 out of 3(2)3.
f(2)=-2(322)2
Step 3.2.1.2
Cancel the common factors.
Tap for more steps...
Step 3.2.1.2.1
Factor 2 out of 2.
f(2)=-2(322)2(1)
Step 3.2.1.2.2
Cancel the common factor.
f(2)=-2(322)21
Step 3.2.1.2.3
Rewrite the expression.
f(2)=-3221
Step 3.2.1.2.4
Divide 322 by 1.
f(2)=-(322)
f(2)=-(322)
f(2)=-(322)
Step 3.2.2
Raise 2 to the power of 2.
f(2)=-(34)
Step 3.2.3
Multiply -(34).
Tap for more steps...
Step 3.2.3.1
Multiply 3 by 4.
f(2)=-112
Step 3.2.3.2
Multiply -1 by 12.
f(2)=-12
f(2)=-12
Step 3.2.4
The final answer is -12.
-12
-12
Step 3.3
Convert -12 to decimal.
y=-12
y=-12
Step 4
Find the point at x=-1.
Tap for more steps...
Step 4.1
Replace the variable x with -1 in the expression.
f(-1)=-3(-1)32
Step 4.2
Simplify the result.
Tap for more steps...
Step 4.2.1
Raise -1 to the power of 3.
f(-1)=-3-12
Step 4.2.2
Multiply 3 by -1.
f(-1)=--32
Step 4.2.3
Move the negative in front of the fraction.
f(-1)=32
Step 4.2.4
The final answer is 32.
32
32
Step 4.3
Convert 32 to decimal.
y=1.5
y=1.5
Step 5
Find the point at x=1.
Tap for more steps...
Step 5.1
Replace the variable x with 1 in the expression.
f(1)=-3(1)32
Step 5.2
Simplify the result.
Tap for more steps...
Step 5.2.1
One to any power is one.
f(1)=-312
Step 5.2.2
Multiply 3 by 1.
f(1)=-32
Step 5.2.3
The final answer is -32.
-32
-32
Step 5.3
Convert -32 to decimal.
y=-1.5
y=-1.5
Step 6
The cubic function can be graphed using the function behavior and the points.
xy-212-11.5001-1.52-12
Step 7
The cubic function can be graphed using the function behavior and the selected points.
Rises to the left and falls to the right
xy-212-11.5001-1.52-12
Step 8
 [x2  12  π  xdx ]