Enter a problem...
Algebra Examples
y=√16-x2y=√16−x2
Step 1
Step 1.1
Set the radicand in √(4+x)(4-x) greater than or equal to 0 to find where the expression is defined.
(4+x)(4-x)≥0
Step 1.2
Solve for x.
Step 1.2.1
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
4+x=0
4-x=0
Step 1.2.2
Set 4+x equal to 0 and solve for x.
Step 1.2.2.1
Set 4+x equal to 0.
4+x=0
Step 1.2.2.2
Subtract 4 from both sides of the equation.
x=-4
x=-4
Step 1.2.3
Set 4-x equal to 0 and solve for x.
Step 1.2.3.1
Set 4-x equal to 0.
4-x=0
Step 1.2.3.2
Solve 4-x=0 for x.
Step 1.2.3.2.1
Subtract 4 from both sides of the equation.
-x=-4
Step 1.2.3.2.2
Divide each term in -x=-4 by -1 and simplify.
Step 1.2.3.2.2.1
Divide each term in -x=-4 by -1.
-x-1=-4-1
Step 1.2.3.2.2.2
Simplify the left side.
Step 1.2.3.2.2.2.1
Dividing two negative values results in a positive value.
x1=-4-1
Step 1.2.3.2.2.2.2
Divide x by 1.
x=-4-1
x=-4-1
Step 1.2.3.2.2.3
Simplify the right side.
Step 1.2.3.2.2.3.1
Divide -4 by -1.
x=4
x=4
x=4
x=4
x=4
Step 1.2.4
The final solution is all the values that make (4+x)(4-x)≥0 true.
x=-4,4
Step 1.2.5
Use each root to create test intervals.
x<-4
-4<x<4
x>4
Step 1.2.6
Choose a test value from each interval and plug this value into the original inequality to determine which intervals satisfy the inequality.
Step 1.2.6.1
Test a value on the interval x<-4 to see if it makes the inequality true.
Step 1.2.6.1.1
Choose a value on the interval x<-4 and see if this value makes the original inequality true.
x=-6
Step 1.2.6.1.2
Replace x with -6 in the original inequality.
(4-6)(4-(-6))≥0
Step 1.2.6.1.3
The left side -20 is less than the right side 0, which means that the given statement is false.
False
False
Step 1.2.6.2
Test a value on the interval -4<x<4 to see if it makes the inequality true.
Step 1.2.6.2.1
Choose a value on the interval -4<x<4 and see if this value makes the original inequality true.
x=0
Step 1.2.6.2.2
Replace x with 0 in the original inequality.
(4+0)(4-(0))≥0
Step 1.2.6.2.3
The left side 16 is greater than the right side 0, which means that the given statement is always true.
True
True
Step 1.2.6.3
Test a value on the interval x>4 to see if it makes the inequality true.
Step 1.2.6.3.1
Choose a value on the interval x>4 and see if this value makes the original inequality true.
x=6
Step 1.2.6.3.2
Replace x with 6 in the original inequality.
(4+6)(4-(6))≥0
Step 1.2.6.3.3
The left side -20 is less than the right side 0, which means that the given statement is false.
False
False
Step 1.2.6.4
Compare the intervals to determine which ones satisfy the original inequality.
x<-4 False
-4<x<4 True
x>4 False
x<-4 False
-4<x<4 True
x>4 False
Step 1.2.7
The solution consists of all of the true intervals.
-4≤x≤4
-4≤x≤4
Step 1.3
The domain is all values of x that make the expression defined.
Interval Notation:
[-4,4]
Set-Builder Notation:
{x|-4≤x≤4}
Interval Notation:
[-4,4]
Set-Builder Notation:
{x|-4≤x≤4}
Step 2
Step 2.1
Replace the variable x with -4 in the expression.
f(-4)=√(4-4)(4-(-4))
Step 2.2
Simplify the result.
Step 2.2.1
Remove parentheses.
f(-4)=√(4-4)(4-(-4))
Step 2.2.2
Subtract 4 from 4.
f(-4)=√0(4-(-4))
Step 2.2.3
Multiply -1 by -4.
f(-4)=√0(4+4)
Step 2.2.4
Add 4 and 4.
f(-4)=√0⋅8
Step 2.2.5
Multiply 0 by 8.
f(-4)=√0
Step 2.2.6
Rewrite 0 as 02.
f(-4)=√02
Step 2.2.7
Pull terms out from under the radical, assuming positive real numbers.
f(-4)=0
Step 2.2.8
The final answer is 0.
0
0
Step 2.3
Replace the variable x with 4 in the expression.
f(4)=√(4+4)(4-(4))
Step 2.4
Simplify the result.
Step 2.4.1
Remove parentheses.
f(4)=√(4+4)(4-(4))
Step 2.4.2
Add 4 and 4.
f(4)=√8(4-(4))
Step 2.4.3
Multiply -1 by 4.
f(4)=√8(4-4)
Step 2.4.4
Subtract 4 from 4.
f(4)=√8⋅0
Step 2.4.5
Multiply 8 by 0.
f(4)=√0
Step 2.4.6
Rewrite 0 as 02.
f(4)=√02
Step 2.4.7
Pull terms out from under the radical, assuming positive real numbers.
f(4)=0
Step 2.4.8
The final answer is 0.
0
0
0
Step 3
The end points are (-4,0),(4,0).
(-4,0),(4,0)
Step 4
Step 4.1
Substitute the x value -3 into f(x)=√(4+x)(4-x). In this case, the point is (-3,√7).
Step 4.1.1
Replace the variable x with -3 in the expression.
f(-3)=√(4-3)(4-(-3))
Step 4.1.2
Simplify the result.
Step 4.1.2.1
Remove parentheses.
f(-3)=√(4-3)(4-(-3))
Step 4.1.2.2
Subtract 3 from 4.
f(-3)=√1(4-(-3))
Step 4.1.2.3
Multiply 4-(-3) by 1.
f(-3)=√4-(-3)
Step 4.1.2.4
Multiply -1 by -3.
f(-3)=√4+3
Step 4.1.2.5
Add 4 and 3.
f(-3)=√7
Step 4.1.2.6
The final answer is √7.
y=√7
y=√7
y=√7
Step 4.2
Substitute the x value -2 into f(x)=√(4+x)(4-x). In this case, the point is (-2,2√3).
Step 4.2.1
Replace the variable x with -2 in the expression.
f(-2)=√(4-2)(4-(-2))
Step 4.2.2
Simplify the result.
Step 4.2.2.1
Remove parentheses.
f(-2)=√(4-2)(4-(-2))
Step 4.2.2.2
Subtract 2 from 4.
f(-2)=√2(4-(-2))
Step 4.2.2.3
Multiply -1 by -2.
f(-2)=√2(4+2)
Step 4.2.2.4
Add 4 and 2.
f(-2)=√2⋅6
Step 4.2.2.5
Multiply 2 by 6.
f(-2)=√12
Step 4.2.2.6
Rewrite 12 as 22⋅3.
Step 4.2.2.6.1
Factor 4 out of 12.
f(-2)=√4(3)
Step 4.2.2.6.2
Rewrite 4 as 22.
f(-2)=√22⋅3
f(-2)=√22⋅3
Step 4.2.2.7
Pull terms out from under the radical.
f(-2)=2√3
Step 4.2.2.8
The final answer is 2√3.
y=2√3
y=2√3
y=2√3
Step 4.3
Substitute the x value -1 into f(x)=√(4+x)(4-x). In this case, the point is (-1,√15).
Step 4.3.1
Replace the variable x with -1 in the expression.
f(-1)=√(4-1)(4-(-1))
Step 4.3.2
Simplify the result.
Step 4.3.2.1
Remove parentheses.
f(-1)=√(4-1)(4-(-1))
Step 4.3.2.2
Subtract 1 from 4.
f(-1)=√3(4-(-1))
Step 4.3.2.3
Multiply -1 by -1.
f(-1)=√3(4+1)
Step 4.3.2.4
Add 4 and 1.
f(-1)=√3⋅5
Step 4.3.2.5
Multiply 3 by 5.
f(-1)=√15
Step 4.3.2.6
The final answer is √15.
y=√15
y=√15
y=√15
Step 4.4
Substitute the x value 0 into f(x)=√(4+x)(4-x). In this case, the point is (0,4).
Step 4.4.1
Replace the variable x with 0 in the expression.
f(0)=√(4+0)(4-(0))
Step 4.4.2
Simplify the result.
Step 4.4.2.1
Remove parentheses.
f(0)=√(4+0)(4-(0))
Step 4.4.2.2
Add 4 and 0.
f(0)=√4(4-(0))
Step 4.4.2.3
Multiply -1 by 0.
f(0)=√4(4+0)
Step 4.4.2.4
Add 4 and 0.
f(0)=√4⋅4
Step 4.4.2.5
Multiply 4 by 4.
f(0)=√16
Step 4.4.2.6
Rewrite 16 as 42.
f(0)=√42
Step 4.4.2.7
Pull terms out from under the radical, assuming positive real numbers.
f(0)=4
Step 4.4.2.8
The final answer is 4.
y=4
y=4
y=4
Step 4.5
Substitute the x value 1 into f(x)=√(4+x)(4-x). In this case, the point is (1,√15).
Step 4.5.1
Replace the variable x with 1 in the expression.
f(1)=√(4+1)(4-(1))
Step 4.5.2
Simplify the result.
Step 4.5.2.1
Remove parentheses.
f(1)=√(4+1)(4-(1))
Step 4.5.2.2
Add 4 and 1.
f(1)=√5(4-(1))
Step 4.5.2.3
Multiply -1 by 1.
f(1)=√5(4-1)
Step 4.5.2.4
Subtract 1 from 4.
f(1)=√5⋅3
Step 4.5.2.5
Multiply 5 by 3.
f(1)=√15
Step 4.5.2.6
The final answer is √15.
y=√15
y=√15
y=√15
Step 4.6
Substitute the x value 2 into f(x)=√(4+x)(4-x). In this case, the point is (2,2√3).
Step 4.6.1
Replace the variable x with 2 in the expression.
f(2)=√(4+2)(4-(2))
Step 4.6.2
Simplify the result.
Step 4.6.2.1
Remove parentheses.
f(2)=√(4+2)(4-(2))
Step 4.6.2.2
Add 4 and 2.
f(2)=√6(4-(2))
Step 4.6.2.3
Multiply -1 by 2.
f(2)=√6(4-2)
Step 4.6.2.4
Subtract 2 from 4.
f(2)=√6⋅2
Step 4.6.2.5
Multiply 6 by 2.
f(2)=√12
Step 4.6.2.6
Rewrite 12 as 22⋅3.
Step 4.6.2.6.1
Factor 4 out of 12.
f(2)=√4(3)
Step 4.6.2.6.2
Rewrite 4 as 22.
f(2)=√22⋅3
f(2)=√22⋅3
Step 4.6.2.7
Pull terms out from under the radical.
f(2)=2√3
Step 4.6.2.8
The final answer is 2√3.
y=2√3
y=2√3
y=2√3
Step 4.7
Substitute the x value 3 into f(x)=√(4+x)(4-x). In this case, the point is (3,√7).
Step 4.7.1
Replace the variable x with 3 in the expression.
f(3)=√(4+3)(4-(3))
Step 4.7.2
Simplify the result.
Step 4.7.2.1
Remove parentheses.
f(3)=√(4+3)(4-(3))
Step 4.7.2.2
Add 4 and 3.
f(3)=√7(4-(3))
Step 4.7.2.3
Multiply -1 by 3.
f(3)=√7(4-3)
Step 4.7.2.4
Subtract 3 from 4.
f(3)=√7⋅1
Step 4.7.2.5
Multiply 7 by 1.
f(3)=√7
Step 4.7.2.6
The final answer is √7.
y=√7
y=√7
y=√7
Step 4.8
The square root can be graphed using the points around the vertex (-4,0),(4,0),(-3,2.65),(-2,3.46),(-1,3.87),(0,4),(1,3.87),(2,3.46),(3,2.65)
xy-40-32.65-23.46-13.870413.8723.4632.6540
xy-40-32.65-23.46-13.870413.8723.4632.6540
Step 5