Algebra Examples

Expand the Logarithmic Expression natural log of (8e^2x^5)/((x^2+1) cube root of x+2)
ln(8e2x5(x2+1)3x+2)ln(8e2x5(x2+1)3x+2)
Step 1
Rewrite ln(8e2x5(x2+1)3x+2)ln(8e2x5(x2+1)3x+2) as ln(8e2x5)-ln((x2+1)3x+2)ln(8e2x5)ln((x2+1)3x+2).
ln(8e2x5)-ln((x2+1)3x+2)ln(8e2x5)ln((x2+1)3x+2)
Step 2
Use nax=axnnax=axn to rewrite 3x+23x+2 as (x+2)13(x+2)13.
ln(8e2x5)-ln((x2+1)(x+2)13)ln(8e2x5)ln((x2+1)(x+2)13)
Step 3
Rewrite ln(8e2x5)ln(8e2x5) as ln(8e2)+ln(x5)ln(8e2)+ln(x5).
ln(8e2)+ln(x5)-ln((x2+1)(x+2)13)ln(8e2)+ln(x5)ln((x2+1)(x+2)13)
Step 4
Rewrite ln(8e2)ln(8e2) as ln(8)+ln(e2)ln(8)+ln(e2).
ln(8)+ln(e2)+ln(x5)-ln((x2+1)(x+2)13)ln(8)+ln(e2)+ln(x5)ln((x2+1)(x+2)13)
Step 5
Expand ln(e2)ln(e2) by moving 22 outside the logarithm.
ln(8)+2ln(e)+ln(x5)-ln((x2+1)(x+2)13)ln(8)+2ln(e)+ln(x5)ln((x2+1)(x+2)13)
Step 6
Expand ln(x5)ln(x5) by moving 55 outside the logarithm.
ln(8)+2ln(e)+5ln(x)-ln((x2+1)(x+2)13)ln(8)+2ln(e)+5ln(x)ln((x2+1)(x+2)13)
Step 7
The natural logarithm of ee is 11.
ln(8)+21+5ln(x)-ln((x2+1)(x+2)13)ln(8)+21+5ln(x)ln((x2+1)(x+2)13)
Step 8
Multiply 22 by 11.
ln(8)+2+5ln(x)-ln((x2+1)(x+2)13)ln(8)+2+5ln(x)ln((x2+1)(x+2)13)
Step 9
Rewrite ln((x2+1)(x+2)13)ln((x2+1)(x+2)13) as ln(x2+1)+ln((x+2)13)ln(x2+1)+ln((x+2)13).
ln(8)+2+5ln(x)-(ln(x2+1)+ln((x+2)13))ln(8)+2+5ln(x)(ln(x2+1)+ln((x+2)13))
Step 10
Expand ln((x+2)13)ln((x+2)13) by moving 1313 outside the logarithm.
ln(8)+2+5ln(x)-(ln(x2+1)+13ln(x+2))ln(8)+2+5ln(x)(ln(x2+1)+13ln(x+2))
Step 11
Simplify each term.
Tap for more steps...
Step 11.1
Rewrite ln(8)ln(8) as ln(23)ln(23).
ln(23)+2+5ln(x)-(ln(x2+1)+13ln(x+2))ln(23)+2+5ln(x)(ln(x2+1)+13ln(x+2))
Step 11.2
Expand ln(23)ln(23) by moving 33 outside the logarithm.
3ln(2)+2+5ln(x)-(ln(x2+1)+13ln(x+2))3ln(2)+2+5ln(x)(ln(x2+1)+13ln(x+2))
Step 11.3
Combine 1313 and ln(x+2)ln(x+2).
3ln(2)+2+5ln(x)-(ln(x2+1)+ln(x+2)3)3ln(2)+2+5ln(x)(ln(x2+1)+ln(x+2)3)
Step 11.4
To write ln(x2+1)ln(x2+1) as a fraction with a common denominator, multiply by 3333.
3ln(2)+2+5ln(x)-(ln(x2+1)33+ln(x+2)3)3ln(2)+2+5ln(x)(ln(x2+1)33+ln(x+2)3)
Step 11.5
Combine ln(x2+1)ln(x2+1) and 3333.
3ln(2)+2+5ln(x)-(ln(x2+1)33+ln(x+2)3)3ln(2)+2+5ln(x)(ln(x2+1)33+ln(x+2)3)
Step 11.6
Combine the numerators over the common denominator.
3ln(2)+2+5ln(x)-ln(x2+1)3+ln(x+2)33ln(2)+2+5ln(x)ln(x2+1)3+ln(x+2)3
Step 11.7
Move 3 to the left of ln(x2+1).
3ln(2)+2+5ln(x)-3ln(x2+1)+ln(x+2)3
3ln(2)+2+5ln(x)-3ln(x2+1)+ln(x+2)3
 [x2  12  π  xdx ]