Algebra Examples

Expand Using the Binomial Theorem (3x-1)^2
(3x1)2
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=nk=0nCk(ankbk).
2k=02!(2k)!k!(3x)2k(1)k
Step 2
Expand the summation.
2!(20)!0!(3x)20(1)0+2!(21)!1!(3x)21(1)1+2!(22)!2!(3x)22(1)2
Step 3
Simplify the exponents for each term of the expansion.
1(3x)2(1)0+2(3x)1(1)1+1(3x)0(1)2
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (3x)2 by 1.
(3x)2(1)0+2(3x)1(1)1+1(3x)0(1)2
Step 4.2
Apply the product rule to 3x.
32x2(1)0+2(3x)1(1)1+1(3x)0(1)2
Step 4.3
Raise 3 to the power of 2.
9x2(1)0+2(3x)1(1)1+1(3x)0(1)2
Step 4.4
Anything raised to 0 is 1.
9x21+2(3x)1(1)1+1(3x)0(1)2
Step 4.5
Multiply 9 by 1.
9x2+2(3x)1(1)1+1(3x)0(1)2
Step 4.6
Simplify.
9x2+2(3x)(1)1+1(3x)0(1)2
Step 4.7
Multiply 3 by 2.
9x2+6x(1)1+1(3x)0(1)2
Step 4.8
Evaluate the exponent.
9x2+6x1+1(3x)0(1)2
Step 4.9
Multiply 1 by 6.
9x26x+1(3x)0(1)2
Step 4.10
Multiply (3x)0 by 1.
9x26x+(3x)0(1)2
Step 4.11
Apply the product rule to 3x.
9x26x+30x0(1)2
Step 4.12
Anything raised to 0 is 1.
9x26x+1x0(1)2
Step 4.13
Multiply x0 by 1.
9x26x+x0(1)2
Step 4.14
Anything raised to 0 is 1.
9x26x+1(1)2
Step 4.15
Multiply (1)2 by 1.
9x26x+(1)2
Step 4.16
Raise 1 to the power of 2.
9x26x+1
9x26x+1
 x2  12  π  xdx