Enter a problem...
Algebra Examples
(3x−1)2
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=n∑k=0nCk⋅(an−kbk).
2∑k=02!(2−k)!k!⋅(3x)2−k⋅(−1)k
Step 2
Expand the summation.
2!(2−0)!0!⋅(3x)2−0⋅(−1)0+2!(2−1)!1!⋅(3x)2−1⋅(−1)1+2!(2−2)!2!⋅(3x)2−2⋅(−1)2
Step 3
Simplify the exponents for each term of the expansion.
1⋅(3x)2⋅(−1)0+2⋅(3x)1⋅(−1)1+1⋅(3x)0⋅(−1)2
Step 4
Step 4.1
Multiply (3x)2 by 1.
(3x)2⋅(−1)0+2⋅(3x)1⋅(−1)1+1⋅(3x)0⋅(−1)2
Step 4.2
Apply the product rule to 3x.
32x2⋅(−1)0+2⋅(3x)1⋅(−1)1+1⋅(3x)0⋅(−1)2
Step 4.3
Raise 3 to the power of 2.
9x2⋅(−1)0+2⋅(3x)1⋅(−1)1+1⋅(3x)0⋅(−1)2
Step 4.4
Anything raised to 0 is 1.
9x2⋅1+2⋅(3x)1⋅(−1)1+1⋅(3x)0⋅(−1)2
Step 4.5
Multiply 9 by 1.
9x2+2⋅(3x)1⋅(−1)1+1⋅(3x)0⋅(−1)2
Step 4.6
Simplify.
9x2+2⋅(3x)⋅(−1)1+1⋅(3x)0⋅(−1)2
Step 4.7
Multiply 3 by 2.
9x2+6x⋅(−1)1+1⋅(3x)0⋅(−1)2
Step 4.8
Evaluate the exponent.
9x2+6x⋅−1+1⋅(3x)0⋅(−1)2
Step 4.9
Multiply −1 by 6.
9x2−6x+1⋅(3x)0⋅(−1)2
Step 4.10
Multiply (3x)0 by 1.
9x2−6x+(3x)0⋅(−1)2
Step 4.11
Apply the product rule to 3x.
9x2−6x+30x0⋅(−1)2
Step 4.12
Anything raised to 0 is 1.
9x2−6x+1x0⋅(−1)2
Step 4.13
Multiply x0 by 1.
9x2−6x+x0⋅(−1)2
Step 4.14
Anything raised to 0 is 1.
9x2−6x+1⋅(−1)2
Step 4.15
Multiply (−1)2 by 1.
9x2−6x+(−1)2
Step 4.16
Raise −1 to the power of 2.
9x2−6x+1
9x2−6x+1