Enter a problem...
Algebra Examples
64x3-27y364x3−27y3
Step 1
Rewrite 64x364x3 as (4x)3(4x)3.
(4x)3-27y3(4x)3−27y3
Step 2
Rewrite 27y327y3 as (3y)3(3y)3.
(4x)3-(3y)3(4x)3−(3y)3
Step 3
Since both terms are perfect cubes, factor using the difference of cubes formula, a3-b3=(a-b)(a2+ab+b2)a3−b3=(a−b)(a2+ab+b2) where a=4xa=4x and b=3yb=3y.
(4x-(3y))((4x)2+4x(3y)+(3y)2)(4x−(3y))((4x)2+4x(3y)+(3y)2)
Step 4
Step 4.1
Multiply 33 by -1−1.
(4x-3y)((4x)2+4x(3y)+(3y)2)(4x−3y)((4x)2+4x(3y)+(3y)2)
Step 4.2
Apply the product rule to 4x4x.
(4x-3y)(42x2+4x(3y)+(3y)2)(4x−3y)(42x2+4x(3y)+(3y)2)
Step 4.3
Raise 44 to the power of 22.
(4x-3y)(16x2+4x(3y)+(3y)2)(4x−3y)(16x2+4x(3y)+(3y)2)
Step 4.4
Rewrite using the commutative property of multiplication.
(4x-3y)(16x2+4⋅3xy+(3y)2)(4x−3y)(16x2+4⋅3xy+(3y)2)
Step 4.5
Multiply 44 by 33.
(4x-3y)(16x2+12xy+(3y)2)(4x−3y)(16x2+12xy+(3y)2)
Step 4.6
Apply the product rule to 3y3y.
(4x-3y)(16x2+12xy+32y2)(4x−3y)(16x2+12xy+32y2)
Step 4.7
Raise 33 to the power of 22.
(4x-3y)(16x2+12xy+9y2)(4x−3y)(16x2+12xy+9y2)
(4x-3y)(16x2+12xy+9y2)(4x−3y)(16x2+12xy+9y2)