Enter a problem...
Algebra Examples
(x-2)2(x−2)2
Step 1
Step 1.1
Use the vertex form, y=a(x-h)2+ky=a(x−h)2+k, to determine the values of aa, hh, and kk.
a=1a=1
h=2h=2
k=0k=0
Step 1.2
Since the value of aa is positive, the parabola opens up.
Opens Up
Step 1.3
Find the vertex (h,k)(h,k).
(2,0)(2,0)
Step 1.4
Find pp, the distance from the vertex to the focus.
Step 1.4.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a14a
Step 1.4.2
Substitute the value of aa into the formula.
14⋅114⋅1
Step 1.4.3
Cancel the common factor of 11.
Step 1.4.3.1
Cancel the common factor.
14⋅114⋅1
Step 1.4.3.2
Rewrite the expression.
1414
1414
1414
Step 1.5
Find the focus.
Step 1.5.1
The focus of a parabola can be found by adding pp to the y-coordinate kk if the parabola opens up or down.
(h,k+p)(h,k+p)
Step 1.5.2
Substitute the known values of hh, pp, and kk into the formula and simplify.
(2,14)(2,14)
(2,14)(2,14)
Step 1.6
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=2x=2
Step 1.7
Find the directrix.
Step 1.7.1
The directrix of a parabola is the horizontal line found by subtracting pp from the y-coordinate kk of the vertex if the parabola opens up or down.
y=k-py=k−p
Step 1.7.2
Substitute the known values of pp and kk into the formula and simplify.
y=-14y=−14
y=-14y=−14
Step 1.8
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (2,0)(2,0)
Focus: (2,14)(2,14)
Axis of Symmetry: x=2x=2
Directrix: y=-14y=−14
Direction: Opens Up
Vertex: (2,0)(2,0)
Focus: (2,14)(2,14)
Axis of Symmetry: x=2x=2
Directrix: y=-14y=−14
Step 2
Step 2.1
Replace the variable xx with 11 in the expression.
f(1)=(1)2-4⋅1+4f(1)=(1)2−4⋅1+4
Step 2.2
Simplify the result.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
One to any power is one.
f(1)=1-4⋅1+4f(1)=1−4⋅1+4
Step 2.2.1.2
Multiply -4−4 by 11.
f(1)=1-4+4f(1)=1−4+4
f(1)=1-4+4f(1)=1−4+4
Step 2.2.2
Simplify by adding and subtracting.
Step 2.2.2.1
Subtract 44 from 11.
f(1)=-3+4f(1)=−3+4
Step 2.2.2.2
Add -3−3 and 44.
f(1)=1f(1)=1
f(1)=1f(1)=1
Step 2.2.3
The final answer is 11.
11
11
Step 2.3
The yy value at x=1x=1 is 11.
y=1y=1
Step 2.4
Replace the variable xx with 00 in the expression.
f(0)=(0)2-4⋅0+4f(0)=(0)2−4⋅0+4
Step 2.5
Simplify the result.
Step 2.5.1
Simplify each term.
Step 2.5.1.1
Raising 00 to any positive power yields 00.
f(0)=0-4⋅0+4f(0)=0−4⋅0+4
Step 2.5.1.2
Multiply -4−4 by 00.
f(0)=0+0+4f(0)=0+0+4
f(0)=0+0+4f(0)=0+0+4
Step 2.5.2
Simplify by adding numbers.
Step 2.5.2.1
Add 00 and 00.
f(0)=0+4f(0)=0+4
Step 2.5.2.2
Add 00 and 44.
f(0)=4f(0)=4
f(0)=4f(0)=4
Step 2.5.3
The final answer is 44.
44
44
Step 2.6
The yy value at x=0x=0 is 44.
y=4y=4
Step 2.7
Replace the variable xx with 33 in the expression.
f(3)=(3)2-4⋅3+4f(3)=(3)2−4⋅3+4
Step 2.8
Simplify the result.
Step 2.8.1
Simplify each term.
Step 2.8.1.1
Raise 33 to the power of 22.
f(3)=9-4⋅3+4f(3)=9−4⋅3+4
Step 2.8.1.2
Multiply -4−4 by 33.
f(3)=9-12+4f(3)=9−12+4
f(3)=9-12+4f(3)=9−12+4
Step 2.8.2
Simplify by adding and subtracting.
Step 2.8.2.1
Subtract 1212 from 99.
f(3)=-3+4f(3)=−3+4
Step 2.8.2.2
Add -3−3 and 44.
f(3)=1f(3)=1
f(3)=1f(3)=1
Step 2.8.3
The final answer is 11.
11
11
Step 2.9
The yy value at x=3x=3 is 11.
y=1y=1
Step 2.10
Replace the variable xx with 44 in the expression.
f(4)=(4)2-4⋅4+4f(4)=(4)2−4⋅4+4
Step 2.11
Simplify the result.
Step 2.11.1
Simplify each term.
Step 2.11.1.1
Raise 44 to the power of 22.
f(4)=16-4⋅4+4f(4)=16−4⋅4+4
Step 2.11.1.2
Multiply -4−4 by 44.
f(4)=16-16+4f(4)=16−16+4
f(4)=16-16+4f(4)=16−16+4
Step 2.11.2
Simplify by adding and subtracting.
Step 2.11.2.1
Subtract 1616 from 1616.
f(4)=0+4f(4)=0+4
Step 2.11.2.2
Add 00 and 44.
f(4)=4f(4)=4
f(4)=4f(4)=4
Step 2.11.3
The final answer is 44.
44
44
Step 2.12
The yy value at x=4x=4 is 44.
y=4y=4
Step 2.13
Graph the parabola using its properties and the selected points.
xy0411203144xy0411203144
xy0411203144xy0411203144
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (2,0)(2,0)
Focus: (2,14)(2,14)
Axis of Symmetry: x=2x=2
Directrix: y=-14y=−14
xy0411203144xy0411203144
Step 4