Enter a problem...
Algebra Examples
y=x2+2x-3y=x2+2x−3
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for x2+2x-3x2+2x−3.
Step 1.1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=2b=2
c=-3c=−3
Step 1.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=22⋅1d=22⋅1
Step 1.1.1.3.2
Cancel the common factor of 22.
Step 1.1.1.3.2.1
Cancel the common factor.
d=22⋅1
Step 1.1.1.3.2.2
Rewrite the expression.
d=1
d=1
d=1
Step 1.1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-3-224⋅1
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Simplify each term.
Step 1.1.1.4.2.1.1
Raise 2 to the power of 2.
e=-3-44⋅1
Step 1.1.1.4.2.1.2
Multiply 4 by 1.
e=-3-44
Step 1.1.1.4.2.1.3
Cancel the common factor of 4.
Step 1.1.1.4.2.1.3.1
Cancel the common factor.
e=-3-44
Step 1.1.1.4.2.1.3.2
Rewrite the expression.
e=-3-1⋅1
e=-3-1⋅1
Step 1.1.1.4.2.1.4
Multiply -1 by 1.
e=-3-1
e=-3-1
Step 1.1.1.4.2.2
Subtract 1 from -3.
e=-4
e=-4
e=-4
Step 1.1.1.5
Substitute the values of a, d, and e into the vertex form (x+1)2-4.
(x+1)2-4
(x+1)2-4
Step 1.1.2
Set y equal to the new right side.
y=(x+1)2-4
y=(x+1)2-4
Step 1.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=-1
k=-4
Step 1.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 1.4
Find the vertex (h,k).
(-1,-4)
Step 1.5
Find p, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 1.5.2
Substitute the value of a into the formula.
14⋅1
Step 1.5.3
Cancel the common factor of 1.
Step 1.5.3.1
Cancel the common factor.
14⋅1
Step 1.5.3.2
Rewrite the expression.
14
14
14
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(-1,-154)
(-1,-154)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=-1
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=-174
y=-174
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (-1,-4)
Focus: (-1,-154)
Axis of Symmetry: x=-1
Directrix: y=-174
Direction: Opens Up
Vertex: (-1,-4)
Focus: (-1,-154)
Axis of Symmetry: x=-1
Directrix: y=-174
Step 2
Step 2.1
Replace the variable x with -2 in the expression.
f(-2)=(-2)2+2(-2)-3
Step 2.2
Simplify the result.
Step 2.2.1
Simplify each term.
Step 2.2.1.1
Raise -2 to the power of 2.
f(-2)=4+2(-2)-3
Step 2.2.1.2
Multiply 2 by -2.
f(-2)=4-4-3
f(-2)=4-4-3
Step 2.2.2
Simplify by subtracting numbers.
Step 2.2.2.1
Subtract 4 from 4.
f(-2)=0-3
Step 2.2.2.2
Subtract 3 from 0.
f(-2)=-3
f(-2)=-3
Step 2.2.3
The final answer is -3.
-3
-3
Step 2.3
The y value at x=-2 is -3.
y=-3
Step 2.4
Replace the variable x with -3 in the expression.
f(-3)=(-3)2+2(-3)-3
Step 2.5
Simplify the result.
Step 2.5.1
Simplify each term.
Step 2.5.1.1
Raise -3 to the power of 2.
f(-3)=9+2(-3)-3
Step 2.5.1.2
Multiply 2 by -3.
f(-3)=9-6-3
f(-3)=9-6-3
Step 2.5.2
Simplify by subtracting numbers.
Step 2.5.2.1
Subtract 6 from 9.
f(-3)=3-3
Step 2.5.2.2
Subtract 3 from 3.
f(-3)=0
f(-3)=0
Step 2.5.3
The final answer is 0.
0
0
Step 2.6
The y value at x=-3 is 0.
y=0
Step 2.7
Replace the variable x with 0 in the expression.
f(0)=(0)2+2(0)-3
Step 2.8
Simplify the result.
Step 2.8.1
Simplify each term.
Step 2.8.1.1
Raising 0 to any positive power yields 0.
f(0)=0+2(0)-3
Step 2.8.1.2
Multiply 2 by 0.
f(0)=0+0-3
f(0)=0+0-3
Step 2.8.2
Simplify by adding and subtracting.
Step 2.8.2.1
Add 0 and 0.
f(0)=0-3
Step 2.8.2.2
Subtract 3 from 0.
f(0)=-3
f(0)=-3
Step 2.8.3
The final answer is -3.
-3
-3
Step 2.9
The y value at x=0 is -3.
y=-3
Step 2.10
Replace the variable x with 1 in the expression.
f(1)=(1)2+2(1)-3
Step 2.11
Simplify the result.
Step 2.11.1
Simplify each term.
Step 2.11.1.1
One to any power is one.
f(1)=1+2(1)-3
Step 2.11.1.2
Multiply 2 by 1.
f(1)=1+2-3
f(1)=1+2-3
Step 2.11.2
Simplify by adding and subtracting.
Step 2.11.2.1
Add 1 and 2.
f(1)=3-3
Step 2.11.2.2
Subtract 3 from 3.
f(1)=0
f(1)=0
Step 2.11.3
The final answer is 0.
0
0
Step 2.12
The y value at x=1 is 0.
y=0
Step 2.13
Graph the parabola using its properties and the selected points.
xy-30-2-3-1-40-310
xy-30-2-3-1-40-310
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (-1,-4)
Focus: (-1,-154)
Axis of Symmetry: x=-1
Directrix: y=-174
xy-30-2-3-1-40-310
Step 4