Algebra Examples

Expand Using the Binomial Theorem (2x+1)^2
(2x+1)2
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=k=0nnCk(an-kbk).
k=022!(2-k)!k!(2x)2-k(1)k
Step 2
Expand the summation.
2!(2-0)!0!(2x)2-0(1)0+2!(2-1)!1!(2x)2-1(1)1+2!(2-2)!2!(2x)2-2(1)2
Step 3
Simplify the exponents for each term of the expansion.
1(2x)2(1)0+2(2x)1(1)1+1(2x)0(1)2
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply 1 by (1)0 by adding the exponents.
Tap for more steps...
Step 4.1.1
Move (1)0.
(1)01(2x)2+2(2x)1(1)1+1(2x)0(1)2
Step 4.1.2
Multiply (1)0 by 1.
Tap for more steps...
Step 4.1.2.1
Raise 1 to the power of 1.
(1)011(2x)2+2(2x)1(1)1+1(2x)0(1)2
Step 4.1.2.2
Use the power rule aman=am+n to combine exponents.
10+1(2x)2+2(2x)1(1)1+1(2x)0(1)2
10+1(2x)2+2(2x)1(1)1+1(2x)0(1)2
Step 4.1.3
Add 0 and 1.
11(2x)2+2(2x)1(1)1+1(2x)0(1)2
11(2x)2+2(2x)1(1)1+1(2x)0(1)2
Step 4.2
Simplify 11(2x)2.
(2x)2+2(2x)1(1)1+1(2x)0(1)2
Step 4.3
Apply the product rule to 2x.
22x2+2(2x)1(1)1+1(2x)0(1)2
Step 4.4
Raise 2 to the power of 2.
4x2+2(2x)1(1)1+1(2x)0(1)2
Step 4.5
Simplify.
4x2+2(2x)(1)1+1(2x)0(1)2
Step 4.6
Multiply 2 by 2.
4x2+4x(1)1+1(2x)0(1)2
Step 4.7
Evaluate the exponent.
4x2+4x1+1(2x)0(1)2
Step 4.8
Multiply 4 by 1.
4x2+4x+1(2x)0(1)2
Step 4.9
Multiply 1 by (1)2 by adding the exponents.
Tap for more steps...
Step 4.9.1
Move (1)2.
4x2+4x+(1)21(2x)0
Step 4.9.2
Multiply (1)2 by 1.
Tap for more steps...
Step 4.9.2.1
Raise 1 to the power of 1.
4x2+4x+(1)211(2x)0
Step 4.9.2.2
Use the power rule aman=am+n to combine exponents.
4x2+4x+12+1(2x)0
4x2+4x+12+1(2x)0
Step 4.9.3
Add 2 and 1.
4x2+4x+13(2x)0
4x2+4x+13(2x)0
Step 4.10
Simplify 13(2x)0.
4x2+4x+13
Step 4.11
One to any power is one.
4x2+4x+1
4x2+4x+1
 [x2  12  π  xdx ]