Algebra Examples

Expand Using the Binomial Theorem (2x-5)^2
(2x-5)2
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=k=0nnCk(an-kbk).
k=022!(2-k)!k!(2x)2-k(-5)k
Step 2
Expand the summation.
2!(2-0)!0!(2x)2-0(-5)0+2!(2-1)!1!(2x)2-1(-5)1+2!(2-2)!2!(2x)2-2(-5)2
Step 3
Simplify the exponents for each term of the expansion.
1(2x)2(-5)0+2(2x)1(-5)1+1(2x)0(-5)2
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (2x)2 by 1.
(2x)2(-5)0+2(2x)1(-5)1+1(2x)0(-5)2
Step 4.2
Apply the product rule to 2x.
22x2(-5)0+2(2x)1(-5)1+1(2x)0(-5)2
Step 4.3
Raise 2 to the power of 2.
4x2(-5)0+2(2x)1(-5)1+1(2x)0(-5)2
Step 4.4
Anything raised to 0 is 1.
4x21+2(2x)1(-5)1+1(2x)0(-5)2
Step 4.5
Multiply 4 by 1.
4x2+2(2x)1(-5)1+1(2x)0(-5)2
Step 4.6
Simplify.
4x2+2(2x)(-5)1+1(2x)0(-5)2
Step 4.7
Multiply 2 by 2.
4x2+4x(-5)1+1(2x)0(-5)2
Step 4.8
Evaluate the exponent.
4x2+4x-5+1(2x)0(-5)2
Step 4.9
Multiply -5 by 4.
4x2-20x+1(2x)0(-5)2
Step 4.10
Multiply (2x)0 by 1.
4x2-20x+(2x)0(-5)2
Step 4.11
Apply the product rule to 2x.
4x2-20x+20x0(-5)2
Step 4.12
Anything raised to 0 is 1.
4x2-20x+1x0(-5)2
Step 4.13
Multiply x0 by 1.
4x2-20x+x0(-5)2
Step 4.14
Anything raised to 0 is 1.
4x2-20x+1(-5)2
Step 4.15
Multiply (-5)2 by 1.
4x2-20x+(-5)2
Step 4.16
Raise -5 to the power of 2.
4x2-20x+25
4x2-20x+25
 [x2  12  π  xdx ]