Enter a problem...
Algebra Examples
f(x)=2x+1f(x)=2x+1
Step 1
Write f(x)=2x+1f(x)=2x+1 as an equation.
y=2x+1y=2x+1
Step 2
Interchange the variables.
x=2y+1x=2y+1
Step 3
Step 3.1
Rewrite the equation as 2y+1=x2y+1=x.
2y+1=x2y+1=x
Step 3.2
Subtract 11 from both sides of the equation.
2y=x-12y=x−1
Step 3.3
Divide each term in 2y=x-12y=x−1 by 22 and simplify.
Step 3.3.1
Divide each term in 2y=x-12y=x−1 by 22.
2y2=x2+-122y2=x2+−12
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Cancel the common factor of 22.
Step 3.3.2.1.1
Cancel the common factor.
2y2=x2+-122y2=x2+−12
Step 3.3.2.1.2
Divide yy by 11.
y=x2+-12y=x2+−12
y=x2+-12y=x2+−12
y=x2+-12y=x2+−12
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Move the negative in front of the fraction.
y=x2-12y=x2−12
y=x2-12y=x2−12
y=x2-12y=x2−12
y=x2-12y=x2−12
Step 4
Replace yy with f-1(x)f−1(x) to show the final answer.
f-1(x)=x2-12f−1(x)=x2−12
Step 5
Step 5.1
To verify the inverse, check if f-1(f(x))=xf−1(f(x))=x and f(f-1(x))=xf(f−1(x))=x.
Step 5.2
Evaluate f-1(f(x))f−1(f(x)).
Step 5.2.1
Set up the composite result function.
f-1(f(x))f−1(f(x))
Step 5.2.2
Evaluate f-1(2x+1)f−1(2x+1) by substituting in the value of ff into f-1f−1.
f-1(2x+1)=2x+12-12f−1(2x+1)=2x+12−12
Step 5.2.3
Combine the numerators over the common denominator.
f-1(2x+1)=2x+1-12f−1(2x+1)=2x+1−12
Step 5.2.4
Combine the opposite terms in 2x+1-12x+1−1.
Step 5.2.4.1
Subtract 11 from 11.
f-1(2x+1)=2x+02f−1(2x+1)=2x+02
Step 5.2.4.2
Add 2x2x and 00.
f-1(2x+1)=2x2f−1(2x+1)=2x2
f-1(2x+1)=2x2f−1(2x+1)=2x2
Step 5.2.5
Cancel the common factor of 22.
Step 5.2.5.1
Cancel the common factor.
f-1(2x+1)=2x2f−1(2x+1)=2x2
Step 5.2.5.2
Divide xx by 11.
f-1(2x+1)=xf−1(2x+1)=x
f-1(2x+1)=xf−1(2x+1)=x
f-1(2x+1)=xf−1(2x+1)=x
Step 5.3
Evaluate f(f-1(x))f(f−1(x)).
Step 5.3.1
Set up the composite result function.
f(f-1(x))f(f−1(x))
Step 5.3.2
Evaluate f(x2-12)f(x2−12) by substituting in the value of f-1f−1 into ff.
f(x2-12)=2(x2-12)+1f(x2−12)=2(x2−12)+1
Step 5.3.3
Simplify each term.
Step 5.3.3.1
Apply the distributive property.
f(x2-12)=2(x2)+2(-12)+1f(x2−12)=2(x2)+2(−12)+1
Step 5.3.3.2
Cancel the common factor of 22.
Step 5.3.3.2.1
Cancel the common factor.
f(x2-12)=2(x2)+2(-12)+1f(x2−12)=2(x2)+2(−12)+1
Step 5.3.3.2.2
Rewrite the expression.
f(x2-12)=x+2(-12)+1f(x2−12)=x+2(−12)+1
f(x2-12)=x+2(-12)+1f(x2−12)=x+2(−12)+1
Step 5.3.3.3
Cancel the common factor of 22.
Step 5.3.3.3.1
Move the leading negative in -12−12 into the numerator.
f(x2-12)=x+2(-12)+1f(x2−12)=x+2(−12)+1
Step 5.3.3.3.2
Cancel the common factor.
f(x2-12)=x+2(-12)+1f(x2−12)=x+2(−12)+1
Step 5.3.3.3.3
Rewrite the expression.
f(x2-12)=x-1+1f(x2−12)=x−1+1
f(x2-12)=x-1+1f(x2−12)=x−1+1
f(x2-12)=x-1+1f(x2−12)=x−1+1
Step 5.3.4
Combine the opposite terms in x-1+1x−1+1.
Step 5.3.4.1
Add -1−1 and 11.
f(x2-12)=x+0f(x2−12)=x+0
Step 5.3.4.2
Add xx and 00.
f(x2-12)=xf(x2−12)=x
f(x2-12)=xf(x2−12)=x
f(x2-12)=xf(x2−12)=x
Step 5.4
Since f-1(f(x))=xf−1(f(x))=x and f(f-1(x))=xf(f−1(x))=x, then f-1(x)=x2-12f−1(x)=x2−12 is the inverse of f(x)=2x+1f(x)=2x+1.
f-1(x)=x2-12f−1(x)=x2−12
f-1(x)=x2-12f−1(x)=x2−12