Algebra Examples

Find the Inverse f(x)=2x+1
f(x)=2x+1f(x)=2x+1
Step 1
Write f(x)=2x+1f(x)=2x+1 as an equation.
y=2x+1y=2x+1
Step 2
Interchange the variables.
x=2y+1x=2y+1
Step 3
Solve for yy.
Tap for more steps...
Step 3.1
Rewrite the equation as 2y+1=x2y+1=x.
2y+1=x2y+1=x
Step 3.2
Subtract 11 from both sides of the equation.
2y=x-12y=x1
Step 3.3
Divide each term in 2y=x-12y=x1 by 22 and simplify.
Tap for more steps...
Step 3.3.1
Divide each term in 2y=x-12y=x1 by 22.
2y2=x2+-122y2=x2+12
Step 3.3.2
Simplify the left side.
Tap for more steps...
Step 3.3.2.1
Cancel the common factor of 22.
Tap for more steps...
Step 3.3.2.1.1
Cancel the common factor.
2y2=x2+-122y2=x2+12
Step 3.3.2.1.2
Divide yy by 11.
y=x2+-12y=x2+12
y=x2+-12y=x2+12
y=x2+-12y=x2+12
Step 3.3.3
Simplify the right side.
Tap for more steps...
Step 3.3.3.1
Move the negative in front of the fraction.
y=x2-12y=x212
y=x2-12y=x212
y=x2-12y=x212
y=x2-12y=x212
Step 4
Replace yy with f-1(x)f1(x) to show the final answer.
f-1(x)=x2-12f1(x)=x212
Step 5
Verify if f-1(x)=x2-12f1(x)=x212 is the inverse of f(x)=2x+1f(x)=2x+1.
Tap for more steps...
Step 5.1
To verify the inverse, check if f-1(f(x))=xf1(f(x))=x and f(f-1(x))=xf(f1(x))=x.
Step 5.2
Evaluate f-1(f(x))f1(f(x)).
Tap for more steps...
Step 5.2.1
Set up the composite result function.
f-1(f(x))f1(f(x))
Step 5.2.2
Evaluate f-1(2x+1)f1(2x+1) by substituting in the value of ff into f-1f1.
f-1(2x+1)=2x+12-12f1(2x+1)=2x+1212
Step 5.2.3
Combine the numerators over the common denominator.
f-1(2x+1)=2x+1-12f1(2x+1)=2x+112
Step 5.2.4
Combine the opposite terms in 2x+1-12x+11.
Tap for more steps...
Step 5.2.4.1
Subtract 11 from 11.
f-1(2x+1)=2x+02f1(2x+1)=2x+02
Step 5.2.4.2
Add 2x2x and 00.
f-1(2x+1)=2x2f1(2x+1)=2x2
f-1(2x+1)=2x2f1(2x+1)=2x2
Step 5.2.5
Cancel the common factor of 22.
Tap for more steps...
Step 5.2.5.1
Cancel the common factor.
f-1(2x+1)=2x2f1(2x+1)=2x2
Step 5.2.5.2
Divide xx by 11.
f-1(2x+1)=xf1(2x+1)=x
f-1(2x+1)=xf1(2x+1)=x
f-1(2x+1)=xf1(2x+1)=x
Step 5.3
Evaluate f(f-1(x))f(f1(x)).
Tap for more steps...
Step 5.3.1
Set up the composite result function.
f(f-1(x))f(f1(x))
Step 5.3.2
Evaluate f(x2-12)f(x212) by substituting in the value of f-1f1 into ff.
f(x2-12)=2(x2-12)+1f(x212)=2(x212)+1
Step 5.3.3
Simplify each term.
Tap for more steps...
Step 5.3.3.1
Apply the distributive property.
f(x2-12)=2(x2)+2(-12)+1f(x212)=2(x2)+2(12)+1
Step 5.3.3.2
Cancel the common factor of 22.
Tap for more steps...
Step 5.3.3.2.1
Cancel the common factor.
f(x2-12)=2(x2)+2(-12)+1f(x212)=2(x2)+2(12)+1
Step 5.3.3.2.2
Rewrite the expression.
f(x2-12)=x+2(-12)+1f(x212)=x+2(12)+1
f(x2-12)=x+2(-12)+1f(x212)=x+2(12)+1
Step 5.3.3.3
Cancel the common factor of 22.
Tap for more steps...
Step 5.3.3.3.1
Move the leading negative in -1212 into the numerator.
f(x2-12)=x+2(-12)+1f(x212)=x+2(12)+1
Step 5.3.3.3.2
Cancel the common factor.
f(x2-12)=x+2(-12)+1f(x212)=x+2(12)+1
Step 5.3.3.3.3
Rewrite the expression.
f(x2-12)=x-1+1f(x212)=x1+1
f(x2-12)=x-1+1f(x212)=x1+1
f(x2-12)=x-1+1f(x212)=x1+1
Step 5.3.4
Combine the opposite terms in x-1+1x1+1.
Tap for more steps...
Step 5.3.4.1
Add -11 and 11.
f(x2-12)=x+0f(x212)=x+0
Step 5.3.4.2
Add xx and 00.
f(x2-12)=xf(x212)=x
f(x2-12)=xf(x212)=x
f(x2-12)=xf(x212)=x
Step 5.4
Since f-1(f(x))=xf1(f(x))=x and f(f-1(x))=xf(f1(x))=x, then f-1(x)=x2-12f1(x)=x212 is the inverse of f(x)=2x+1f(x)=2x+1.
f-1(x)=x2-12f1(x)=x212
f-1(x)=x2-12f1(x)=x212
 [x2  12  π  xdx ]