Enter a problem...
Algebra Examples
f(x)=x2-1f(x)=x2−1
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for x2-1x2−1.
Step 1.1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=1a=1
b=0b=0
c=-1c=−1
Step 1.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=02⋅1d=02⋅1
Step 1.1.1.3.2
Cancel the common factor of 00 and 22.
Step 1.1.1.3.2.1
Factor 22 out of 00.
d=2(0)2⋅1d=2(0)2⋅1
Step 1.1.1.3.2.2
Cancel the common factors.
Step 1.1.1.3.2.2.1
Factor 22 out of 2⋅12⋅1.
d=2(0)2(1)d=2(0)2(1)
Step 1.1.1.3.2.2.2
Cancel the common factor.
d=2⋅02⋅1
Step 1.1.1.3.2.2.3
Rewrite the expression.
d=01
Step 1.1.1.3.2.2.4
Divide 0 by 1.
d=0
d=0
d=0
d=0
Step 1.1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=-1-024⋅1
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Simplify each term.
Step 1.1.1.4.2.1.1
Raising 0 to any positive power yields 0.
e=-1-04⋅1
Step 1.1.1.4.2.1.2
Multiply 4 by 1.
e=-1-04
Step 1.1.1.4.2.1.3
Divide 0 by 4.
e=-1-0
Step 1.1.1.4.2.1.4
Multiply -1 by 0.
e=-1+0
e=-1+0
Step 1.1.1.4.2.2
Add -1 and 0.
e=-1
e=-1
e=-1
Step 1.1.1.5
Substitute the values of a, d, and e into the vertex form (x+0)2-1.
(x+0)2-1
(x+0)2-1
Step 1.1.2
Set y equal to the new right side.
y=(x+0)2-1
y=(x+0)2-1
Step 1.2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=1
h=0
k=-1
Step 1.3
Since the value of a is positive, the parabola opens up.
Opens Up
Step 1.4
Find the vertex (h,k).
(0,-1)
Step 1.5
Find p, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 1.5.2
Substitute the value of a into the formula.
14⋅1
Step 1.5.3
Cancel the common factor of 1.
Step 1.5.3.1
Cancel the common factor.
14⋅1
Step 1.5.3.2
Rewrite the expression.
14
14
14
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 1.6.2
Substitute the known values of h, p, and k into the formula and simplify.
(0,-34)
(0,-34)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=0
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting p from the y-coordinate k of the vertex if the parabola opens up or down.
y=k-p
Step 1.8.2
Substitute the known values of p and k into the formula and simplify.
y=-54
y=-54
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Up
Vertex: (0,-1)
Focus: (0,-34)
Axis of Symmetry: x=0
Directrix: y=-54
Direction: Opens Up
Vertex: (0,-1)
Focus: (0,-34)
Axis of Symmetry: x=0
Directrix: y=-54
Step 2
Step 2.1
Replace the variable x with -1 in the expression.
f(-1)=(-1)2-1
Step 2.2
Simplify the result.
Step 2.2.1
Raise -1 to the power of 2.
f(-1)=1-1
Step 2.2.2
Subtract 1 from 1.
f(-1)=0
Step 2.2.3
The final answer is 0.
0
0
Step 2.3
The y value at x=-1 is 0.
y=0
Step 2.4
Replace the variable x with -2 in the expression.
f(-2)=(-2)2-1
Step 2.5
Simplify the result.
Step 2.5.1
Raise -2 to the power of 2.
f(-2)=4-1
Step 2.5.2
Subtract 1 from 4.
f(-2)=3
Step 2.5.3
The final answer is 3.
3
3
Step 2.6
The y value at x=-2 is 3.
y=3
Step 2.7
Replace the variable x with 1 in the expression.
f(1)=(1)2-1
Step 2.8
Simplify the result.
Step 2.8.1
One to any power is one.
f(1)=1-1
Step 2.8.2
Subtract 1 from 1.
f(1)=0
Step 2.8.3
The final answer is 0.
0
0
Step 2.9
The y value at x=1 is 0.
y=0
Step 2.10
Replace the variable x with 2 in the expression.
f(2)=(2)2-1
Step 2.11
Simplify the result.
Step 2.11.1
Raise 2 to the power of 2.
f(2)=4-1
Step 2.11.2
Subtract 1 from 4.
f(2)=3
Step 2.11.3
The final answer is 3.
3
3
Step 2.12
The y value at x=2 is 3.
y=3
Step 2.13
Graph the parabola using its properties and the selected points.
xy-23-100-11023
xy-23-100-11023
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Up
Vertex: (0,-1)
Focus: (0,-34)
Axis of Symmetry: x=0
Directrix: y=-54
xy-23-100-11023
Step 4