Algebra Examples

Expand Using the Binomial Theorem (x+2)^3
(x+2)3
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=k=0nnCk(an-kbk).
k=033!(3-k)!k!(x)3-k(2)k
Step 2
Expand the summation.
3!(3-0)!0!(x)3-0(2)0+3!(3-1)!1!(x)3-1(2)1+3!(3-2)!2!(x)3-2(2)2+3!(3-3)!3!(x)3-3(2)3
Step 3
Simplify the exponents for each term of the expansion.
1(x)3(2)0+3(x)2(2)1+3(x)1(2)2+1(x)0(2)3
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (x)3 by 1.
(x)3(2)0+3(x)2(2)1+3(x)1(2)2+1(x)0(2)3
Step 4.2
Anything raised to 0 is 1.
x31+3(x)2(2)1+3(x)1(2)2+1(x)0(2)3
Step 4.3
Multiply x3 by 1.
x3+3(x)2(2)1+3(x)1(2)2+1(x)0(2)3
Step 4.4
Evaluate the exponent.
x3+3x22+3(x)1(2)2+1(x)0(2)3
Step 4.5
Multiply 2 by 3.
x3+6x2+3(x)1(2)2+1(x)0(2)3
Step 4.6
Simplify.
x3+6x2+3x(2)2+1(x)0(2)3
Step 4.7
Raise 2 to the power of 2.
x3+6x2+3x4+1(x)0(2)3
Step 4.8
Multiply 4 by 3.
x3+6x2+12x+1(x)0(2)3
Step 4.9
Multiply (x)0 by 1.
x3+6x2+12x+(x)0(2)3
Step 4.10
Anything raised to 0 is 1.
x3+6x2+12x+1(2)3
Step 4.11
Multiply (2)3 by 1.
x3+6x2+12x+(2)3
Step 4.12
Raise 2 to the power of 3.
x3+6x2+12x+8
x3+6x2+12x+8
 [x2  12  π  xdx ]