Enter a problem...
Algebra Examples
x-y=3x−y=3
Step 1
Step 1.1
Subtract xx from both sides of the equation.
-y=3-x−y=3−x
Step 1.2
Divide each term in -y=3-x−y=3−x by -1−1 and simplify.
Step 1.2.1
Divide each term in -y=3-x−y=3−x by -1−1.
-y-1=3-1+-x-1−y−1=3−1+−x−1
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Dividing two negative values results in a positive value.
y1=3-1+-x-1y1=3−1+−x−1
Step 1.2.2.2
Divide yy by 11.
y=3-1+-x-1y=3−1+−x−1
y=3-1+-x-1y=3−1+−x−1
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Divide 33 by -1−1.
y=-3+-x-1y=−3+−x−1
Step 1.2.3.1.2
Dividing two negative values results in a positive value.
y=-3+x1y=−3+x1
Step 1.2.3.1.3
Divide xx by 11.
y=-3+xy=−3+x
y=-3+xy=−3+x
y=-3+xy=−3+x
y=-3+xy=−3+x
y=-3+xy=−3+x
Step 2
Step 2.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.2
Reorder -3−3 and xx.
y=x-3y=x−3
y=x-3y=x−3
Step 3
Step 3.1
Find the values of mm and bb using the form y=mx+by=mx+b.
m=1m=1
b=-3b=−3
Step 3.2
The slope of the line is the value of mm, and the y-intercept is the value of bb.
Slope: 11
y-intercept: (0,-3)(0,−3)
Slope: 11
y-intercept: (0,-3)(0,−3)
Step 4
Step 4.1
Reorder -3−3 and xx.
y=x-3y=x−3
Step 4.2
Create a table of the xx and yy values.
xy0-31-2xy0−31−2
xy0-31-2xy0−31−2
Step 5
Graph the line using the slope and the y-intercept, or the points.
Slope: 1
y-intercept: (0,-3)
xy0-31-2
Step 6