Algebra Examples

Solve Using the Quadratic Formula x^2+10x+25=0
x2+10x+25=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 2
Substitute the values a=1, b=10, and c=25 into the quadratic formula and solve for x.
-10±102-4(125)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise 10 to the power of 2.
x=-10±100-412521
Step 3.1.2
Multiply -4125.
Tap for more steps...
Step 3.1.2.1
Multiply -4 by 1.
x=-10±100-42521
Step 3.1.2.2
Multiply -4 by 25.
x=-10±100-10021
x=-10±100-10021
Step 3.1.3
Subtract 100 from 100.
x=-10±021
Step 3.1.4
Rewrite 0 as 02.
x=-10±0221
Step 3.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=-10±021
Step 3.1.6
-10 plus or minus 0 is -10.
x=-1021
x=-1021
Step 3.2
Multiply 2 by 1.
x=-102
Step 3.3
Divide -10 by 2.
x=-5
x=-5
Step 4
The final answer is the combination of both solutions.
x=-5 Double roots
 [x2  12  π  xdx ]