Algebra Examples

Solve Using the Quadratic Formula x^2-2x-4=0
x2-2x-4=0x22x4=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=1a=1, b=-2b=2, and c=-4c=4 into the quadratic formula and solve for xx.
2±(-2)2-4(1-4)212±(2)24(14)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise -22 to the power of 22.
x=2±4-41-421x=2±441421
Step 3.1.2
Multiply -41-4414.
Tap for more steps...
Step 3.1.2.1
Multiply -44 by 11.
x=2±4-4-421x=2±44421
Step 3.1.2.2
Multiply -44 by -44.
x=2±4+1621x=2±4+1621
x=2±4+1621x=2±4+1621
Step 3.1.3
Add 44 and 1616.
x=2±2021x=2±2021
Step 3.1.4
Rewrite 2020 as 225225.
Tap for more steps...
Step 3.1.4.1
Factor 44 out of 2020.
x=2±4(5)21x=2±4(5)21
Step 3.1.4.2
Rewrite 44 as 2222.
x=2±22521x=2±22521
x=2±22521x=2±22521
Step 3.1.5
Pull terms out from under the radical.
x=2±2521x=2±2521
x=2±2521x=2±2521
Step 3.2
Multiply 22 by 11.
x=2±252x=2±252
Step 3.3
Simplify 2±2522±252.
x=1±5x=1±5
x=1±5x=1±5
Step 4
The result can be shown in multiple forms.
Exact Form:
x=1±5x=1±5
Decimal Form:
x=3.23606797,-1.23606797x=3.23606797,1.23606797
 [x2  12  π  xdx ]  x2  12  π  xdx