Enter a problem...
Algebra Examples
x2-2x-4=0x2−2x−4=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=1a=1, b=-2b=−2, and c=-4c=−4 into the quadratic formula and solve for xx.
2±√(-2)2-4⋅(1⋅-4)2⋅12±√(−2)2−4⋅(1⋅−4)2⋅1
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise -2−2 to the power of 22.
x=2±√4-4⋅1⋅-42⋅1x=2±√4−4⋅1⋅−42⋅1
Step 3.1.2
Multiply -4⋅1⋅-4−4⋅1⋅−4.
Step 3.1.2.1
Multiply -4−4 by 11.
x=2±√4-4⋅-42⋅1x=2±√4−4⋅−42⋅1
Step 3.1.2.2
Multiply -4−4 by -4−4.
x=2±√4+162⋅1x=2±√4+162⋅1
x=2±√4+162⋅1x=2±√4+162⋅1
Step 3.1.3
Add 44 and 1616.
x=2±√202⋅1x=2±√202⋅1
Step 3.1.4
Rewrite 2020 as 22⋅522⋅5.
Step 3.1.4.1
Factor 44 out of 2020.
x=2±√4(5)2⋅1x=2±√4(5)2⋅1
Step 3.1.4.2
Rewrite 44 as 2222.
x=2±√22⋅52⋅1x=2±√22⋅52⋅1
x=2±√22⋅52⋅1x=2±√22⋅52⋅1
Step 3.1.5
Pull terms out from under the radical.
x=2±2√52⋅1x=2±2√52⋅1
x=2±2√52⋅1x=2±2√52⋅1
Step 3.2
Multiply 22 by 11.
x=2±2√52x=2±2√52
Step 3.3
Simplify 2±2√522±2√52.
x=1±√5x=1±√5
x=1±√5x=1±√5
Step 4
The result can be shown in multiple forms.
Exact Form:
x=1±√5x=1±√5
Decimal Form:
x=3.23606797…,-1.23606797…x=3.23606797…,−1.23606797…