Enter a problem...
Algebra Examples
x2-7x+12=0x2−7x+12=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=1a=1, b=-7b=−7, and c=12c=12 into the quadratic formula and solve for xx.
7±√(-7)2-4⋅(1⋅12)2⋅17±√(−7)2−4⋅(1⋅12)2⋅1
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise -7−7 to the power of 22.
x=7±√49-4⋅1⋅122⋅1x=7±√49−4⋅1⋅122⋅1
Step 3.1.2
Multiply -4⋅1⋅12−4⋅1⋅12.
Step 3.1.2.1
Multiply -4−4 by 11.
x=7±√49-4⋅122⋅1x=7±√49−4⋅122⋅1
Step 3.1.2.2
Multiply -4−4 by 1212.
x=7±√49-482⋅1x=7±√49−482⋅1
x=7±√49-482⋅1x=7±√49−482⋅1
Step 3.1.3
Subtract 4848 from 4949.
x=7±√12⋅1x=7±√12⋅1
Step 3.1.4
Any root of 11 is 11.
x=7±12⋅1x=7±12⋅1
x=7±12⋅1x=7±12⋅1
Step 3.2
Multiply 22 by 11.
x=7±12x=7±12
x=7±12x=7±12
Step 4
The final answer is the combination of both solutions.
x=4,3x=4,3