Algebra Examples

Solve Using the Quadratic Formula x^2-7x+12=0
x2-7x+12=0x27x+12=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=1a=1, b=-7b=7, and c=12c=12 into the quadratic formula and solve for xx.
7±(-7)2-4(112)217±(7)24(112)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise -77 to the power of 22.
x=7±49-411221x=7±49411221
Step 3.1.2
Multiply -41124112.
Tap for more steps...
Step 3.1.2.1
Multiply -44 by 11.
x=7±49-41221x=7±4941221
Step 3.1.2.2
Multiply -44 by 1212.
x=7±49-4821x=7±494821
x=7±49-4821x=7±494821
Step 3.1.3
Subtract 4848 from 4949.
x=7±121x=7±121
Step 3.1.4
Any root of 11 is 11.
x=7±121x=7±121
x=7±121x=7±121
Step 3.2
Multiply 22 by 11.
x=7±12x=7±12
x=7±12x=7±12
Step 4
The final answer is the combination of both solutions.
x=4,3x=4,3
 [x2  12  π  xdx ]