Enter a problem...
Algebra Examples
f(x)=-x2f(x)=−x2
Step 1
Step 1.1
Rewrite the equation in vertex form.
Step 1.1.1
Complete the square for -x2−x2.
Step 1.1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=-1a=−1
b=0b=0
c=0c=0
Step 1.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Step 1.1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=02⋅-1d=02⋅−1
Step 1.1.1.3.2
Simplify the right side.
Step 1.1.1.3.2.1
Cancel the common factor of 00 and 22.
Step 1.1.1.3.2.1.1
Factor 22 out of 00.
d=2(0)2⋅-1d=2(0)2⋅−1
Step 1.1.1.3.2.1.2
Move the negative one from the denominator of 0-10−1.
d=-1⋅0d=−1⋅0
d=-1⋅0d=−1⋅0
Step 1.1.1.3.2.2
Rewrite -1⋅0−1⋅0 as -0−0.
d=-0d=−0
Step 1.1.1.3.2.3
Multiply -1−1 by 00.
d=0d=0
d=0d=0
d=0d=0
Step 1.1.1.4
Find the value of ee using the formula e=c-b24ae=c−b24a.
Step 1.1.1.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=c−b24a.
e=0-024⋅-1e=0−024⋅−1
Step 1.1.1.4.2
Simplify the right side.
Step 1.1.1.4.2.1
Simplify each term.
Step 1.1.1.4.2.1.1
Raising 00 to any positive power yields 00.
e=0-04⋅-1e=0−04⋅−1
Step 1.1.1.4.2.1.2
Multiply 44 by -1−1.
e=0-0-4e=0−0−4
Step 1.1.1.4.2.1.3
Divide 00 by -4−4.
e=0-0e=0−0
Step 1.1.1.4.2.1.4
Multiply -1−1 by 00.
e=0+0e=0+0
e=0+0e=0+0
Step 1.1.1.4.2.2
Add 00 and 00.
e=0e=0
e=0e=0
e=0e=0
Step 1.1.1.5
Substitute the values of aa, dd, and ee into the vertex form -x2−x2.
-x2−x2
-x2−x2
Step 1.1.2
Set yy equal to the new right side.
y=-x2y=−x2
y=-x2y=−x2
Step 1.2
Use the vertex form, y=a(x-h)2+ky=a(x−h)2+k, to determine the values of aa, hh, and kk.
a=-1a=−1
h=0h=0
k=0k=0
Step 1.3
Since the value of aa is negative, the parabola opens down.
Opens Down
Step 1.4
Find the vertex (h,k)(h,k).
(0,0)(0,0)
Step 1.5
Find pp, the distance from the vertex to the focus.
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a14a
Step 1.5.2
Substitute the value of aa into the formula.
14⋅-114⋅−1
Step 1.5.3
Cancel the common factor of 11 and -1−1.
Step 1.5.3.1
Rewrite 11 as -1(-1)−1(−1).
-1(-1)4⋅-1−1(−1)4⋅−1
Step 1.5.3.2
Move the negative in front of the fraction.
-14−14
-14−14
-14−14
Step 1.6
Find the focus.
Step 1.6.1
The focus of a parabola can be found by adding pp to the y-coordinate kk if the parabola opens up or down.
(h,k+p)(h,k+p)
Step 1.6.2
Substitute the known values of hh, pp, and kk into the formula and simplify.
(0,-14)(0,−14)
(0,-14)(0,−14)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=0x=0
Step 1.8
Find the directrix.
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting pp from the y-coordinate kk of the vertex if the parabola opens up or down.
y=k-py=k−p
Step 1.8.2
Substitute the known values of pp and kk into the formula and simplify.
y=14y=14
y=14y=14
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Down
Vertex: (0,0)(0,0)
Focus: (0,-14)(0,−14)
Axis of Symmetry: x=0x=0
Directrix: y=14y=14
Direction: Opens Down
Vertex: (0,0)(0,0)
Focus: (0,-14)(0,−14)
Axis of Symmetry: x=0x=0
Directrix: y=14y=14
Step 2
Step 2.1
Replace the variable xx with -1−1 in the expression.
f(-1)=-(-1)2f(−1)=−(−1)2
Step 2.2
Simplify the result.
Step 2.2.1
Multiply -1−1 by (-1)2(−1)2 by adding the exponents.
Step 2.2.1.1
Multiply -1−1 by (-1)2(−1)2.
Step 2.2.1.1.1
Raise -1−1 to the power of 11.
f(-1)=(-1)(-1)2f(−1)=(−1)(−1)2
Step 2.2.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
f(-1)=(-1)1+2f(−1)=(−1)1+2
f(-1)=(-1)1+2f(−1)=(−1)1+2
Step 2.2.1.2
Add 11 and 22.
f(-1)=(-1)3f(−1)=(−1)3
f(-1)=(-1)3f(−1)=(−1)3
Step 2.2.2
Raise -1−1 to the power of 33.
f(-1)=-1f(−1)=−1
Step 2.2.3
The final answer is -1−1.
-1−1
-1−1
Step 2.3
The yy value at x=-1x=−1 is -1−1.
y=-1y=−1
Step 2.4
Replace the variable xx with -2−2 in the expression.
f(-2)=-(-2)2f(−2)=−(−2)2
Step 2.5
Simplify the result.
Step 2.5.1
Raise -2−2 to the power of 22.
f(-2)=-1⋅4f(−2)=−1⋅4
Step 2.5.2
Multiply -1−1 by 44.
f(-2)=-4f(−2)=−4
Step 2.5.3
The final answer is -4−4.
-4−4
-4−4
Step 2.6
The yy value at x=-2x=−2 is -4−4.
y=-4y=−4
Step 2.7
Replace the variable xx with 11 in the expression.
f(1)=-(1)2f(1)=−(1)2
Step 2.8
Simplify the result.
Step 2.8.1
One to any power is one.
f(1)=-1⋅1f(1)=−1⋅1
Step 2.8.2
Multiply -1−1 by 11.
f(1)=-1f(1)=−1
Step 2.8.3
The final answer is -1−1.
-1−1
-1−1
Step 2.9
The yy value at x=1x=1 is -1−1.
y=-1y=−1
Step 2.10
Replace the variable xx with 22 in the expression.
f(2)=-(2)2f(2)=−(2)2
Step 2.11
Simplify the result.
Step 2.11.1
Raise 22 to the power of 22.
f(2)=-1⋅4f(2)=−1⋅4
Step 2.11.2
Multiply -1−1 by 44.
f(2)=-4f(2)=−4
Step 2.11.3
The final answer is -4−4.
-4−4
-4−4
Step 2.12
The yy value at x=2x=2 is -4−4.
y=-4y=−4
Step 2.13
Graph the parabola using its properties and the selected points.
xy-2-4-1-1001-12-4xy−2−4−1−1001−12−4
xy-2-4-1-1001-12-4xy−2−4−1−1001−12−4
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex: (0,0)(0,0)
Focus: (0,-14)(0,−14)
Axis of Symmetry: x=0x=0
Directrix: y=14y=14
xy-2-4-1-1001-12-4xy−2−4−1−1001−12−4
Step 4