Algebra Examples

Graph f(x)=-x^2
f(x)=-x2f(x)=x2
Step 1
Find the properties of the given parabola.
Tap for more steps...
Step 1.1
Rewrite the equation in vertex form.
Tap for more steps...
Step 1.1.1
Complete the square for -x2x2.
Tap for more steps...
Step 1.1.1.1
Use the form ax2+bx+cax2+bx+c, to find the values of aa, bb, and cc.
a=-1a=1
b=0b=0
c=0c=0
Step 1.1.1.2
Consider the vertex form of a parabola.
a(x+d)2+ea(x+d)2+e
Step 1.1.1.3
Find the value of dd using the formula d=b2ad=b2a.
Tap for more steps...
Step 1.1.1.3.1
Substitute the values of aa and bb into the formula d=b2ad=b2a.
d=02-1d=021
Step 1.1.1.3.2
Simplify the right side.
Tap for more steps...
Step 1.1.1.3.2.1
Cancel the common factor of 00 and 22.
Tap for more steps...
Step 1.1.1.3.2.1.1
Factor 22 out of 00.
d=2(0)2-1d=2(0)21
Step 1.1.1.3.2.1.2
Move the negative one from the denominator of 0-101.
d=-10d=10
d=-10d=10
Step 1.1.1.3.2.2
Rewrite -1010 as -00.
d=-0d=0
Step 1.1.1.3.2.3
Multiply -11 by 00.
d=0d=0
d=0d=0
d=0d=0
Step 1.1.1.4
Find the value of ee using the formula e=c-b24ae=cb24a.
Tap for more steps...
Step 1.1.1.4.1
Substitute the values of cc, bb and aa into the formula e=c-b24ae=cb24a.
e=0-024-1e=00241
Step 1.1.1.4.2
Simplify the right side.
Tap for more steps...
Step 1.1.1.4.2.1
Simplify each term.
Tap for more steps...
Step 1.1.1.4.2.1.1
Raising 00 to any positive power yields 00.
e=0-04-1e=0041
Step 1.1.1.4.2.1.2
Multiply 44 by -11.
e=0-0-4e=004
Step 1.1.1.4.2.1.3
Divide 00 by -44.
e=0-0e=00
Step 1.1.1.4.2.1.4
Multiply -11 by 00.
e=0+0e=0+0
e=0+0e=0+0
Step 1.1.1.4.2.2
Add 00 and 00.
e=0e=0
e=0e=0
e=0e=0
Step 1.1.1.5
Substitute the values of aa, dd, and ee into the vertex form -x2x2.
-x2x2
-x2x2
Step 1.1.2
Set yy equal to the new right side.
y=-x2y=x2
y=-x2y=x2
Step 1.2
Use the vertex form, y=a(x-h)2+ky=a(xh)2+k, to determine the values of aa, hh, and kk.
a=-1a=1
h=0h=0
k=0k=0
Step 1.3
Since the value of aa is negative, the parabola opens down.
Opens Down
Step 1.4
Find the vertex (h,k)(h,k).
(0,0)(0,0)
Step 1.5
Find pp, the distance from the vertex to the focus.
Tap for more steps...
Step 1.5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a14a
Step 1.5.2
Substitute the value of aa into the formula.
14-1141
Step 1.5.3
Cancel the common factor of 11 and -11.
Tap for more steps...
Step 1.5.3.1
Rewrite 11 as -1(-1)1(1).
-1(-1)4-11(1)41
Step 1.5.3.2
Move the negative in front of the fraction.
-1414
-1414
-1414
Step 1.6
Find the focus.
Tap for more steps...
Step 1.6.1
The focus of a parabola can be found by adding pp to the y-coordinate kk if the parabola opens up or down.
(h,k+p)(h,k+p)
Step 1.6.2
Substitute the known values of hh, pp, and kk into the formula and simplify.
(0,-14)(0,14)
(0,-14)(0,14)
Step 1.7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=0x=0
Step 1.8
Find the directrix.
Tap for more steps...
Step 1.8.1
The directrix of a parabola is the horizontal line found by subtracting pp from the y-coordinate kk of the vertex if the parabola opens up or down.
y=k-py=kp
Step 1.8.2
Substitute the known values of pp and kk into the formula and simplify.
y=14y=14
y=14y=14
Step 1.9
Use the properties of the parabola to analyze and graph the parabola.
Direction: Opens Down
Vertex: (0,0)(0,0)
Focus: (0,-14)(0,14)
Axis of Symmetry: x=0x=0
Directrix: y=14y=14
Direction: Opens Down
Vertex: (0,0)(0,0)
Focus: (0,-14)(0,14)
Axis of Symmetry: x=0x=0
Directrix: y=14y=14
Step 2
Select a few xx values, and plug them into the equation to find the corresponding yy values. The xx values should be selected around the vertex.
Tap for more steps...
Step 2.1
Replace the variable xx with -11 in the expression.
f(-1)=-(-1)2f(1)=(1)2
Step 2.2
Simplify the result.
Tap for more steps...
Step 2.2.1
Multiply -11 by (-1)2(1)2 by adding the exponents.
Tap for more steps...
Step 2.2.1.1
Multiply -11 by (-1)2(1)2.
Tap for more steps...
Step 2.2.1.1.1
Raise -11 to the power of 11.
f(-1)=(-1)(-1)2f(1)=(1)(1)2
Step 2.2.1.1.2
Use the power rule aman=am+naman=am+n to combine exponents.
f(-1)=(-1)1+2f(1)=(1)1+2
f(-1)=(-1)1+2f(1)=(1)1+2
Step 2.2.1.2
Add 11 and 22.
f(-1)=(-1)3f(1)=(1)3
f(-1)=(-1)3f(1)=(1)3
Step 2.2.2
Raise -11 to the power of 33.
f(-1)=-1f(1)=1
Step 2.2.3
The final answer is -11.
-11
-11
Step 2.3
The yy value at x=-1x=1 is -11.
y=-1y=1
Step 2.4
Replace the variable xx with -22 in the expression.
f(-2)=-(-2)2f(2)=(2)2
Step 2.5
Simplify the result.
Tap for more steps...
Step 2.5.1
Raise -22 to the power of 22.
f(-2)=-14f(2)=14
Step 2.5.2
Multiply -11 by 44.
f(-2)=-4f(2)=4
Step 2.5.3
The final answer is -44.
-44
-44
Step 2.6
The yy value at x=-2x=2 is -44.
y=-4y=4
Step 2.7
Replace the variable xx with 11 in the expression.
f(1)=-(1)2f(1)=(1)2
Step 2.8
Simplify the result.
Tap for more steps...
Step 2.8.1
One to any power is one.
f(1)=-11f(1)=11
Step 2.8.2
Multiply -11 by 11.
f(1)=-1f(1)=1
Step 2.8.3
The final answer is -11.
-11
-11
Step 2.9
The yy value at x=1x=1 is -11.
y=-1y=1
Step 2.10
Replace the variable xx with 22 in the expression.
f(2)=-(2)2f(2)=(2)2
Step 2.11
Simplify the result.
Tap for more steps...
Step 2.11.1
Raise 22 to the power of 22.
f(2)=-14f(2)=14
Step 2.11.2
Multiply -11 by 44.
f(2)=-4f(2)=4
Step 2.11.3
The final answer is -44.
-44
-44
Step 2.12
The yy value at x=2x=2 is -44.
y=-4y=4
Step 2.13
Graph the parabola using its properties and the selected points.
xy-2-4-1-1001-12-4xy2411001124
xy-2-4-1-1001-12-4xy2411001124
Step 3
Graph the parabola using its properties and the selected points.
Direction: Opens Down
Vertex: (0,0)(0,0)
Focus: (0,-14)(0,14)
Axis of Symmetry: x=0x=0
Directrix: y=14y=14
xy-2-4-1-1001-12-4xy2411001124
Step 4
 [x2  12  π  xdx ]  x2  12  π  xdx