Algebra Examples

Solve Using the Quadratic Formula x^2-8x+16=0
x2-8x+16=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 2
Substitute the values a=1, b=-8, and c=16 into the quadratic formula and solve for x.
8±(-8)2-4(116)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise -8 to the power of 2.
x=8±64-411621
Step 3.1.2
Multiply -4116.
Tap for more steps...
Step 3.1.2.1
Multiply -4 by 1.
x=8±64-41621
Step 3.1.2.2
Multiply -4 by 16.
x=8±64-6421
x=8±64-6421
Step 3.1.3
Subtract 64 from 64.
x=8±021
Step 3.1.4
Rewrite 0 as 02.
x=8±0221
Step 3.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=8±021
Step 3.1.6
8 plus or minus 0 is 8.
x=821
x=821
Step 3.2
Multiply 2 by 1.
x=82
Step 3.3
Divide 8 by 2.
x=4
x=4
Step 4
The final answer is the combination of both solutions.
x=4 Double roots
 [x2  12  π  xdx ]