Algebra Examples

Solve Using the Quadratic Formula x^2+6x+4=0
x2+6x+4=0x2+6x+4=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=1a=1, b=6b=6, and c=4c=4 into the quadratic formula and solve for xx.
-6±62-4(14)216±624(14)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise 66 to the power of 22.
x=-6±36-41421x=6±3641421
Step 3.1.2
Multiply -414414.
Tap for more steps...
Step 3.1.2.1
Multiply -44 by 11.
x=-6±36-4421x=6±364421
Step 3.1.2.2
Multiply -44 by 44.
x=-6±36-1621x=6±361621
x=-6±36-1621x=6±361621
Step 3.1.3
Subtract 1616 from 3636.
x=-6±2021x=6±2021
Step 3.1.4
Rewrite 2020 as 225225.
Tap for more steps...
Step 3.1.4.1
Factor 44 out of 2020.
x=-6±4(5)21x=6±4(5)21
Step 3.1.4.2
Rewrite 44 as 2222.
x=-6±22521x=6±22521
x=-6±22521x=6±22521
Step 3.1.5
Pull terms out from under the radical.
x=-6±2521x=6±2521
x=-6±2521x=6±2521
Step 3.2
Multiply 22 by 11.
x=-6±252x=6±252
Step 3.3
Simplify -6±2526±252.
x=-3±5x=3±5
x=-3±5x=3±5
Step 4
The result can be shown in multiple forms.
Exact Form:
x=-3±5x=3±5
Decimal Form:
x=-0.76393202,-5.23606797x=0.76393202,5.23606797
 [x2  12  π  xdx ]  x2  12  π  xdx