Enter a problem...
Algebra Examples
x2+6x+4=0x2+6x+4=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=1a=1, b=6b=6, and c=4c=4 into the quadratic formula and solve for xx.
-6±√62-4⋅(1⋅4)2⋅1−6±√62−4⋅(1⋅4)2⋅1
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise 66 to the power of 22.
x=-6±√36-4⋅1⋅42⋅1x=−6±√36−4⋅1⋅42⋅1
Step 3.1.2
Multiply -4⋅1⋅4−4⋅1⋅4.
Step 3.1.2.1
Multiply -4−4 by 11.
x=-6±√36-4⋅42⋅1x=−6±√36−4⋅42⋅1
Step 3.1.2.2
Multiply -4−4 by 44.
x=-6±√36-162⋅1x=−6±√36−162⋅1
x=-6±√36-162⋅1x=−6±√36−162⋅1
Step 3.1.3
Subtract 1616 from 3636.
x=-6±√202⋅1x=−6±√202⋅1
Step 3.1.4
Rewrite 2020 as 22⋅522⋅5.
Step 3.1.4.1
Factor 44 out of 2020.
x=-6±√4(5)2⋅1x=−6±√4(5)2⋅1
Step 3.1.4.2
Rewrite 44 as 2222.
x=-6±√22⋅52⋅1x=−6±√22⋅52⋅1
x=-6±√22⋅52⋅1x=−6±√22⋅52⋅1
Step 3.1.5
Pull terms out from under the radical.
x=-6±2√52⋅1x=−6±2√52⋅1
x=-6±2√52⋅1x=−6±2√52⋅1
Step 3.2
Multiply 22 by 11.
x=-6±2√52x=−6±2√52
Step 3.3
Simplify -6±2√52−6±2√52.
x=-3±√5x=−3±√5
x=-3±√5x=−3±√5
Step 4
The result can be shown in multiple forms.
Exact Form:
x=-3±√5x=−3±√5
Decimal Form:
x=-0.76393202…,-5.23606797…x=−0.76393202…,−5.23606797…