Enter a problem...
Algebra Examples
(√x+√2)2(√x+√2)2
Step 1
Rewrite (√x+√2)2(√x+√2)2 as (√x+√2)(√x+√2)(√x+√2)(√x+√2).
(√x+√2)(√x+√2)(√x+√2)(√x+√2)
Step 2
Step 2.1
Apply the distributive property.
√x(√x+√2)+√2(√x+√2)√x(√x+√2)+√2(√x+√2)
Step 2.2
Apply the distributive property.
√x√x+√x√2+√2(√x+√2)√x√x+√x√2+√2(√x+√2)
Step 2.3
Apply the distributive property.
√x√x+√x√2+√2√x+√2√2√x√x+√x√2+√2√x+√2√2
√x√x+√x√2+√2√x+√2√2√x√x+√x√2+√2√x+√2√2
Step 3
Step 3.1
Simplify each term.
Step 3.1.1
Multiply √x√x√x√x.
Step 3.1.1.1
Raise √x√x to the power of 11.
√x1√x+√x√2+√2√x+√2√2√x1√x+√x√2+√2√x+√2√2
Step 3.1.1.2
Raise √x√x to the power of 11.
√x1√x1+√x√2+√2√x+√2√2√x1√x1+√x√2+√2√x+√2√2
Step 3.1.1.3
Use the power rule aman=am+naman=am+n to combine exponents.
√x1+1+√x√2+√2√x+√2√2√x1+1+√x√2+√2√x+√2√2
Step 3.1.1.4
Add 11 and 11.
√x2+√x√2+√2√x+√2√2√x2+√x√2+√2√x+√2√2
√x2+√x√2+√2√x+√2√2√x2+√x√2+√2√x+√2√2
Step 3.1.2
Rewrite √x2√x2 as xx.
Step 3.1.2.1
Use n√ax=axnn√ax=axn to rewrite √x as x12.
(x12)2+√x√2+√2√x+√2√2
Step 3.1.2.2
Apply the power rule and multiply exponents, (am)n=amn.
x12⋅2+√x√2+√2√x+√2√2
Step 3.1.2.3
Combine 12 and 2.
x22+√x√2+√2√x+√2√2
Step 3.1.2.4
Cancel the common factor of 2.
Step 3.1.2.4.1
Cancel the common factor.
x22+√x√2+√2√x+√2√2
Step 3.1.2.4.2
Rewrite the expression.
x1+√x√2+√2√x+√2√2
x1+√x√2+√2√x+√2√2
Step 3.1.2.5
Simplify.
x+√x√2+√2√x+√2√2
x+√x√2+√2√x+√2√2
Step 3.1.3
Combine using the product rule for radicals.
x+√x⋅2+√2√x+√2√2
Step 3.1.4
Combine using the product rule for radicals.
x+√x⋅2+√2x+√2√2
Step 3.1.5
Combine using the product rule for radicals.
x+√x⋅2+√2x+√2⋅2
Step 3.1.6
Multiply 2 by 2.
x+√x⋅2+√2x+√4
Step 3.1.7
Rewrite 4 as 22.
x+√x⋅2+√2x+√22
Step 3.1.8
Pull terms out from under the radical, assuming positive real numbers.
x+√x⋅2+√2x+2
x+√x⋅2+√2x+2
Step 3.2
Add √x⋅2 and √2x.
Step 3.2.1
Reorder x and 2.
x+√2⋅x+√2x+2
Step 3.2.2
Add √2⋅x and √2x.
x+2√2⋅x+2
x+2√2⋅x+2
x+2√2⋅x+2