Algebra Examples

Solve Using the Quadratic Formula x^2-4x+4=0
x2-4x+4=0x24x+4=0
Step 1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2
Substitute the values a=1a=1, b=-4b=4, and c=4c=4 into the quadratic formula and solve for xx.
4±(-4)2-4(14)214±(4)24(14)21
Step 3
Simplify.
Tap for more steps...
Step 3.1
Simplify the numerator.
Tap for more steps...
Step 3.1.1
Raise -44 to the power of 22.
x=4±16-41421x=4±1641421
Step 3.1.2
Multiply -414414.
Tap for more steps...
Step 3.1.2.1
Multiply -44 by 11.
x=4±16-4421x=4±164421
Step 3.1.2.2
Multiply -44 by 44.
x=4±16-1621x=4±161621
x=4±16-1621x=4±161621
Step 3.1.3
Subtract 1616 from 1616.
x=4±021x=4±021
Step 3.1.4
Rewrite 00 as 0202.
x=4±0221x=4±0221
Step 3.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=4±021x=4±021
Step 3.1.6
44 plus or minus 00 is 44.
x=421x=421
x=421x=421
Step 3.2
Multiply 22 by 11.
x=42x=42
Step 3.3
Divide 44 by 22.
x=2x=2
x=2x=2
Step 4
The final answer is the combination of both solutions.
x=2x=2 Double roots
 [x2  12  π  xdx ]  x2  12  π  xdx