Enter a problem...
Algebra Examples
x2-4x+4=0x2−4x+4=0
Step 1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2
Substitute the values a=1a=1, b=-4b=−4, and c=4c=4 into the quadratic formula and solve for xx.
4±√(-4)2-4⋅(1⋅4)2⋅14±√(−4)2−4⋅(1⋅4)2⋅1
Step 3
Step 3.1
Simplify the numerator.
Step 3.1.1
Raise -4−4 to the power of 22.
x=4±√16-4⋅1⋅42⋅1x=4±√16−4⋅1⋅42⋅1
Step 3.1.2
Multiply -4⋅1⋅4−4⋅1⋅4.
Step 3.1.2.1
Multiply -4−4 by 11.
x=4±√16-4⋅42⋅1x=4±√16−4⋅42⋅1
Step 3.1.2.2
Multiply -4−4 by 44.
x=4±√16-162⋅1x=4±√16−162⋅1
x=4±√16-162⋅1x=4±√16−162⋅1
Step 3.1.3
Subtract 1616 from 1616.
x=4±√02⋅1x=4±√02⋅1
Step 3.1.4
Rewrite 00 as 0202.
x=4±√022⋅1x=4±√022⋅1
Step 3.1.5
Pull terms out from under the radical, assuming positive real numbers.
x=4±02⋅1x=4±02⋅1
Step 3.1.6
44 plus or minus 00 is 44.
x=42⋅1x=42⋅1
x=42⋅1x=42⋅1
Step 3.2
Multiply 22 by 11.
x=42x=42
Step 3.3
Divide 44 by 22.
x=2x=2
x=2x=2
Step 4
The final answer is the combination of both solutions.
x=2x=2 Double roots