Algebra Examples

Expand Using the Binomial Theorem (x+3)^2
(x+3)2
Step 1
Use the binomial expansion theorem to find each term. The binomial theorem states (a+b)n=k=0nnCk(an-kbk).
k=022!(2-k)!k!(x)2-k(3)k
Step 2
Expand the summation.
2!(2-0)!0!(x)2-0(3)0+2!(2-1)!1!(x)2-1(3)1+2!(2-2)!2!(x)2-2(3)2
Step 3
Simplify the exponents for each term of the expansion.
1(x)2(3)0+2(x)1(3)1+1(x)0(3)2
Step 4
Simplify each term.
Tap for more steps...
Step 4.1
Multiply (x)2 by 1.
(x)2(3)0+2(x)1(3)1+1(x)0(3)2
Step 4.2
Anything raised to 0 is 1.
x21+2(x)1(3)1+1(x)0(3)2
Step 4.3
Multiply x2 by 1.
x2+2(x)1(3)1+1(x)0(3)2
Step 4.4
Simplify.
x2+2x(3)1+1(x)0(3)2
Step 4.5
Evaluate the exponent.
x2+2x3+1(x)0(3)2
Step 4.6
Multiply 3 by 2.
x2+6x+1(x)0(3)2
Step 4.7
Multiply (x)0 by 1.
x2+6x+(x)0(3)2
Step 4.8
Anything raised to 0 is 1.
x2+6x+1(3)2
Step 4.9
Multiply (3)2 by 1.
x2+6x+(3)2
Step 4.10
Raise 3 to the power of 2.
x2+6x+9
x2+6x+9
(x+3)2
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
4
4
5
5
6
6
/
/
^
^
×
×
>
>
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
π
π
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]