Algebra Examples

Find the Perpendicular Line y=-10/9x-22/9 ; (4,2)
y=-109x-229y=109x229 ; (4,2)(4,2)
Step 1
Find the slope when y=-109x-229y=109x229.
Tap for more steps...
Step 1.1
Rewrite in slope-intercept form.
Tap for more steps...
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Simplify the right side.
Tap for more steps...
Step 1.1.2.1
Simplify each term.
Tap for more steps...
Step 1.1.2.1.1
Combine xx and 109109.
y=-x109-229y=x109229
Step 1.1.2.1.2
Move 1010 to the left of xx.
y=-10x9-229y=10x9229
y=-10x9-229y=10x9229
y=-10x9-229y=10x9229
Step 1.1.3
Write in y=mx+by=mx+b form.
Tap for more steps...
Step 1.1.3.1
Reorder terms.
y=-(109x)-229y=(109x)229
Step 1.1.3.2
Remove parentheses.
y=-109x-229y=109x229
y=-109x-229y=109x229
y=-109x-229y=109x229
Step 1.2
Using the slope-intercept form, the slope is -109109.
m=-109m=109
m=-109m=109
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-109mperpendicular=1109
Step 3
Simplify -1-1091109 to find the slope of the perpendicular line.
Tap for more steps...
Step 3.1
Cancel the common factor of 11 and -11.
Tap for more steps...
Step 3.1.1
Rewrite 11 as -1(-1)1(1).
mperpendicular=--1-1-109mperpendicular=11109
Step 3.1.2
Move the negative in front of the fraction.
mperpendicular=1109mperpendicular=1109
mperpendicular=1109mperpendicular=1109
Step 3.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1(910)mperpendicular=1(910)
Step 3.3
Multiply 910910 by 11.
mperpendicular=910mperpendicular=910
Step 3.4
Multiply --910910.
Tap for more steps...
Step 3.4.1
Multiply -11 by -11.
mperpendicular=1(910)mperpendicular=1(910)
Step 3.4.2
Multiply 910910 by 11.
mperpendicular=910mperpendicular=910
mperpendicular=910mperpendicular=910
mperpendicular=910mperpendicular=910
Step 4
Find the equation of the perpendicular line using the point-slope formula.
Tap for more steps...
Step 4.1
Use the slope 910910 and a given point (4,2)(4,2) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)yy1=m(xx1), which is derived from the slope equation m=y2-y1x2-x1m=y2y1x2x1.
y-(2)=910(x-(4))y(2)=910(x(4))
Step 4.2
Simplify the equation and keep it in point-slope form.
y-2=910(x-4)y2=910(x4)
y-2=910(x-4)y2=910(x4)
Step 5
Write in y=mx+by=mx+b form.
Tap for more steps...
Step 5.1
Solve for yy.
Tap for more steps...
Step 5.1.1
Simplify 910(x-4)910(x4).
Tap for more steps...
Step 5.1.1.1
Rewrite.
y-2=0+0+910(x-4)y2=0+0+910(x4)
Step 5.1.1.2
Simplify by adding zeros.
y-2=910(x-4)y2=910(x4)
Step 5.1.1.3
Apply the distributive property.
y-2=910x+910-4y2=910x+9104
Step 5.1.1.4
Combine 910910 and xx.
y-2=9x10+910-4y2=9x10+9104
Step 5.1.1.5
Cancel the common factor of 22.
Tap for more steps...
Step 5.1.1.5.1
Factor 22 out of 1010.
y-2=9x10+92(5)-4y2=9x10+92(5)4
Step 5.1.1.5.2
Factor 22 out of -44.
y-2=9x10+925(2-2)y2=9x10+925(22)
Step 5.1.1.5.3
Cancel the common factor.
y-2=9x10+925(2-2)
Step 5.1.1.5.4
Rewrite the expression.
y-2=9x10+95-2
y-2=9x10+95-2
Step 5.1.1.6
Combine 95 and -2.
y-2=9x10+9-25
Step 5.1.1.7
Simplify the expression.
Tap for more steps...
Step 5.1.1.7.1
Multiply 9 by -2.
y-2=9x10+-185
Step 5.1.1.7.2
Move the negative in front of the fraction.
y-2=9x10-185
y-2=9x10-185
y-2=9x10-185
Step 5.1.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 5.1.2.1
Add 2 to both sides of the equation.
y=9x10-185+2
Step 5.1.2.2
To write 2 as a fraction with a common denominator, multiply by 55.
y=9x10-185+255
Step 5.1.2.3
Combine 2 and 55.
y=9x10-185+255
Step 5.1.2.4
Combine the numerators over the common denominator.
y=9x10+-18+255
Step 5.1.2.5
Simplify the numerator.
Tap for more steps...
Step 5.1.2.5.1
Multiply 2 by 5.
y=9x10+-18+105
Step 5.1.2.5.2
Add -18 and 10.
y=9x10+-85
y=9x10+-85
Step 5.1.2.6
Move the negative in front of the fraction.
y=9x10-85
y=9x10-85
y=9x10-85
Step 5.2
Reorder terms.
y=910x-85
y=910x-85
Step 6
 [x2  12  π  xdx ]