Enter a problem...
Algebra Examples
y=-109x-229y=−109x−229 ; (4,2)(4,2)
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Simplify the right side.
Step 1.1.2.1
Simplify each term.
Step 1.1.2.1.1
Combine xx and 109109.
y=-x⋅109-229y=−x⋅109−229
Step 1.1.2.1.2
Move 1010 to the left of xx.
y=-10x9-229y=−10x9−229
y=-10x9-229y=−10x9−229
y=-10x9-229y=−10x9−229
Step 1.1.3
Write in y=mx+by=mx+b form.
Step 1.1.3.1
Reorder terms.
y=-(109x)-229y=−(109x)−229
Step 1.1.3.2
Remove parentheses.
y=-109x-229y=−109x−229
y=-109x-229y=−109x−229
y=-109x-229y=−109x−229
Step 1.2
Using the slope-intercept form, the slope is -109−109.
m=-109m=−109
m=-109m=−109
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-109mperpendicular=−1−109
Step 3
Step 3.1
Cancel the common factor of 11 and -1−1.
Step 3.1.1
Rewrite 11 as -1(-1)−1(−1).
mperpendicular=--1⋅-1-109mperpendicular=−−1⋅−1−109
Step 3.1.2
Move the negative in front of the fraction.
mperpendicular=1109mperpendicular=1109
mperpendicular=1109mperpendicular=1109
Step 3.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1(910)mperpendicular=1(910)
Step 3.3
Multiply 910910 by 11.
mperpendicular=910mperpendicular=910
Step 3.4
Multiply --910−−910.
Step 3.4.1
Multiply -1−1 by -1−1.
mperpendicular=1(910)mperpendicular=1(910)
Step 3.4.2
Multiply 910910 by 11.
mperpendicular=910mperpendicular=910
mperpendicular=910mperpendicular=910
mperpendicular=910mperpendicular=910
Step 4
Step 4.1
Use the slope 910910 and a given point (4,2)(4,2) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(2)=910⋅(x-(4))y−(2)=910⋅(x−(4))
Step 4.2
Simplify the equation and keep it in point-slope form.
y-2=910⋅(x-4)y−2=910⋅(x−4)
y-2=910⋅(x-4)y−2=910⋅(x−4)
Step 5
Step 5.1
Solve for yy.
Step 5.1.1
Simplify 910⋅(x-4)910⋅(x−4).
Step 5.1.1.1
Rewrite.
y-2=0+0+910⋅(x-4)y−2=0+0+910⋅(x−4)
Step 5.1.1.2
Simplify by adding zeros.
y-2=910⋅(x-4)y−2=910⋅(x−4)
Step 5.1.1.3
Apply the distributive property.
y-2=910x+910⋅-4y−2=910x+910⋅−4
Step 5.1.1.4
Combine 910910 and xx.
y-2=9x10+910⋅-4y−2=9x10+910⋅−4
Step 5.1.1.5
Cancel the common factor of 22.
Step 5.1.1.5.1
Factor 22 out of 1010.
y-2=9x10+92(5)⋅-4y−2=9x10+92(5)⋅−4
Step 5.1.1.5.2
Factor 22 out of -4−4.
y-2=9x10+92⋅5⋅(2⋅-2)y−2=9x10+92⋅5⋅(2⋅−2)
Step 5.1.1.5.3
Cancel the common factor.
y-2=9x10+92⋅5⋅(2⋅-2)
Step 5.1.1.5.4
Rewrite the expression.
y-2=9x10+95⋅-2
y-2=9x10+95⋅-2
Step 5.1.1.6
Combine 95 and -2.
y-2=9x10+9⋅-25
Step 5.1.1.7
Simplify the expression.
Step 5.1.1.7.1
Multiply 9 by -2.
y-2=9x10+-185
Step 5.1.1.7.2
Move the negative in front of the fraction.
y-2=9x10-185
y-2=9x10-185
y-2=9x10-185
Step 5.1.2
Move all terms not containing y to the right side of the equation.
Step 5.1.2.1
Add 2 to both sides of the equation.
y=9x10-185+2
Step 5.1.2.2
To write 2 as a fraction with a common denominator, multiply by 55.
y=9x10-185+2⋅55
Step 5.1.2.3
Combine 2 and 55.
y=9x10-185+2⋅55
Step 5.1.2.4
Combine the numerators over the common denominator.
y=9x10+-18+2⋅55
Step 5.1.2.5
Simplify the numerator.
Step 5.1.2.5.1
Multiply 2 by 5.
y=9x10+-18+105
Step 5.1.2.5.2
Add -18 and 10.
y=9x10+-85
y=9x10+-85
Step 5.1.2.6
Move the negative in front of the fraction.
y=9x10-85
y=9x10-85
y=9x10-85
Step 5.2
Reorder terms.
y=910x-85
y=910x-85
Step 6