Enter a problem...
Algebra Examples
through: (0,5)(0,5) , perp. to y=12x-4y=12x−4
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Simplify the right side.
Step 1.1.2.1
Combine 1212 and xx.
y=x2-4y=x2−4
y=x2-4y=x2−4
Step 1.1.3
Reorder terms.
y=12x-4y=12x−4
y=12x-4y=12x−4
Step 1.2
Using the slope-intercept form, the slope is 1212.
m=12m=12
m=12m=12
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-112mperpendicular=−112
Step 3
Step 3.1
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=-(1⋅2)mperpendicular=−(1⋅2)
Step 3.2
Multiply -(1⋅2)−(1⋅2).
Step 3.2.1
Multiply 22 by 11.
mperpendicular=-1⋅2mperpendicular=−1⋅2
Step 3.2.2
Multiply -1−1 by 22.
mperpendicular=-2mperpendicular=−2
mperpendicular=-2mperpendicular=−2
mperpendicular=-2mperpendicular=−2
Step 4
Step 4.1
Use the slope -2−2 and a given point (0,5)(0,5) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(5)=-2⋅(x-(0))y−(5)=−2⋅(x−(0))
Step 4.2
Simplify the equation and keep it in point-slope form.
y-5=-2⋅(x+0)y−5=−2⋅(x+0)
y-5=-2⋅(x+0)y−5=−2⋅(x+0)
Step 5
Step 5.1
Add xx and 00.
y-5=-2xy−5=−2x
Step 5.2
Add 55 to both sides of the equation.
y=-2x+5y=−2x+5
y=-2x+5y=−2x+5
Step 6