Algebra Examples

Find the Perpendicular Line y=-x/2-6 (-8,1)
y=-x2-6y=x26 (-8,1)(8,1)
Step 1
Find the slope when y=-x2-6y=x26.
Tap for more steps...
Step 1.1
Rewrite in slope-intercept form.
Tap for more steps...
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Write in y=mx+by=mx+b form.
Tap for more steps...
Step 1.1.2.1
Reorder terms.
y=-(12x)-6y=(12x)6
Step 1.1.2.2
Remove parentheses.
y=-12x-6y=12x6
y=-12x-6y=12x6
y=-12x-6y=12x6
Step 1.2
Using the slope-intercept form, the slope is -1212.
m=-12m=12
m=-12m=12
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-12mperpendicular=112
Step 3
Simplify -1-12112 to find the slope of the perpendicular line.
Tap for more steps...
Step 3.1
Cancel the common factor of 11 and -11.
Tap for more steps...
Step 3.1.1
Rewrite 11 as -1(-1)1(1).
mperpendicular=--1-1-12mperpendicular=1112
Step 3.1.2
Move the negative in front of the fraction.
mperpendicular=112mperpendicular=112
mperpendicular=112mperpendicular=112
Step 3.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=12mperpendicular=12
Step 3.3
Multiply --(12)(12).
Tap for more steps...
Step 3.3.1
Multiply 22 by 11.
mperpendicular=-(-12)mperpendicular=(12)
Step 3.3.2
Multiply -11 by 22.
mperpendicular=2mperpendicular=2
Step 3.3.3
Multiply -11 by -22.
mperpendicular=2mperpendicular=2
mperpendicular=2mperpendicular=2
mperpendicular=2mperpendicular=2
Step 4
Find the equation of the perpendicular line using the point-slope formula.
Tap for more steps...
Step 4.1
Use the slope 22 and a given point (-8,1)(8,1) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)yy1=m(xx1), which is derived from the slope equation m=y2-y1x2-x1m=y2y1x2x1.
y-(1)=2(x-(-8))y(1)=2(x(8))
Step 4.2
Simplify the equation and keep it in point-slope form.
y-1=2(x+8)y1=2(x+8)
y-1=2(x+8)y1=2(x+8)
Step 5
Solve for yy.
Tap for more steps...
Step 5.1
Simplify 2(x+8)2(x+8).
Tap for more steps...
Step 5.1.1
Rewrite.
y-1=0+0+2(x+8)y1=0+0+2(x+8)
Step 5.1.2
Simplify by adding zeros.
y-1=2(x+8)y1=2(x+8)
Step 5.1.3
Apply the distributive property.
y-1=2x+28y1=2x+28
Step 5.1.4
Multiply 22 by 88.
y-1=2x+16y1=2x+16
y-1=2x+16y1=2x+16
Step 5.2
Move all terms not containing yy to the right side of the equation.
Tap for more steps...
Step 5.2.1
Add 11 to both sides of the equation.
y=2x+16+1y=2x+16+1
Step 5.2.2
Add 1616 and 11.
y=2x+17y=2x+17
y=2x+17y=2x+17
y=2x+17y=2x+17
Step 6
 [x2  12  π  xdx ]  x2  12  π  xdx