Enter a problem...
Algebra Examples
y=-x2-6y=−x2−6 (-8,1)(−8,1)
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Write in y=mx+by=mx+b form.
Step 1.1.2.1
Reorder terms.
y=-(12x)-6y=−(12x)−6
Step 1.1.2.2
Remove parentheses.
y=-12x-6y=−12x−6
y=-12x-6y=−12x−6
y=-12x-6y=−12x−6
Step 1.2
Using the slope-intercept form, the slope is -12−12.
m=-12m=−12
m=-12m=−12
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-12mperpendicular=−1−12
Step 3
Step 3.1
Cancel the common factor of 11 and -1−1.
Step 3.1.1
Rewrite 11 as -1(-1)−1(−1).
mperpendicular=--1⋅-1-12mperpendicular=−−1⋅−1−12
Step 3.1.2
Move the negative in front of the fraction.
mperpendicular=112mperpendicular=112
mperpendicular=112mperpendicular=112
Step 3.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1⋅2mperpendicular=1⋅2
Step 3.3
Multiply --(1⋅2)−−(1⋅2).
Step 3.3.1
Multiply 22 by 11.
mperpendicular=-(-1⋅2)mperpendicular=−(−1⋅2)
Step 3.3.2
Multiply -1−1 by 22.
mperpendicular=2mperpendicular=2
Step 3.3.3
Multiply -1−1 by -2−2.
mperpendicular=2mperpendicular=2
mperpendicular=2mperpendicular=2
mperpendicular=2mperpendicular=2
Step 4
Step 4.1
Use the slope 22 and a given point (-8,1)(−8,1) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(1)=2⋅(x-(-8))y−(1)=2⋅(x−(−8))
Step 4.2
Simplify the equation and keep it in point-slope form.
y-1=2⋅(x+8)y−1=2⋅(x+8)
y-1=2⋅(x+8)y−1=2⋅(x+8)
Step 5
Step 5.1
Simplify 2⋅(x+8)2⋅(x+8).
Step 5.1.1
Rewrite.
y-1=0+0+2⋅(x+8)y−1=0+0+2⋅(x+8)
Step 5.1.2
Simplify by adding zeros.
y-1=2⋅(x+8)y−1=2⋅(x+8)
Step 5.1.3
Apply the distributive property.
y-1=2x+2⋅8y−1=2x+2⋅8
Step 5.1.4
Multiply 22 by 88.
y-1=2x+16y−1=2x+16
y-1=2x+16y−1=2x+16
Step 5.2
Move all terms not containing yy to the right side of the equation.
Step 5.2.1
Add 11 to both sides of the equation.
y=2x+16+1y=2x+16+1
Step 5.2.2
Add 1616 and 11.
y=2x+17y=2x+17
y=2x+17y=2x+17
y=2x+17y=2x+17
Step 6