Enter a problem...
Algebra Examples
A line is perpendicular to y=−15x+1 and intersects the point (−5,1) What is the equation of this perpendicular line?
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 1.1.2
Simplify the right side.
Step 1.1.2.1
Combine x and 15.
y=−x5+1
y=−x5+1
Step 1.1.3
Write in y=mx+b form.
Step 1.1.3.1
Reorder terms.
y=−(15x)+1
Step 1.1.3.2
Remove parentheses.
y=−15x+1
y=−15x+1
y=−15x+1
Step 1.2
Using the slope-intercept form, the slope is −15.
m=−15
m=−15
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=−1−15
Step 3
Step 3.1
Cancel the common factor of 1 and −1.
Step 3.1.1
Rewrite 1 as −1(−1).
mperpendicular=−−1⋅−1−15
Step 3.1.2
Move the negative in front of the fraction.
mperpendicular=115
mperpendicular=115
Step 3.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1⋅5
Step 3.3
Multiply −−(1⋅5).
Step 3.3.1
Multiply 5 by 1.
mperpendicular=−(−1⋅5)
Step 3.3.2
Multiply −1 by 5.
mperpendicular=5
Step 3.3.3
Multiply −1 by −5.
mperpendicular=5
mperpendicular=5
mperpendicular=5
Step 4
Step 4.1
Use the slope 5 and a given point (−5,1) to substitute for x1 and y1 in the point-slope form y−y1=m(x−x1), which is derived from the slope equation m=y2−y1x2−x1.
y−(1)=5⋅(x−(−5))
Step 4.2
Simplify the equation and keep it in point-slope form.
y−1=5⋅(x+5)
y−1=5⋅(x+5)
Step 5
Step 5.1
Simplify 5⋅(x+5).
Step 5.1.1
Rewrite.
y−1=0+0+5⋅(x+5)
Step 5.1.2
Simplify by adding zeros.
y−1=5⋅(x+5)
Step 5.1.3
Apply the distributive property.
y−1=5x+5⋅5
Step 5.1.4
Multiply 5 by 5.
y−1=5x+25
y−1=5x+25
Step 5.2
Move all terms not containing y to the right side of the equation.
Step 5.2.1
Add 1 to both sides of the equation.
y=5x+25+1
Step 5.2.2
Add 25 and 1.
y=5x+26
y=5x+26
y=5x+26
Step 6