Enter a problem...
Algebra Examples
y=-34x+1y=−34x+1 and (9,12)(9,12)
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Simplify the right side.
Step 1.1.2.1
Simplify each term.
Step 1.1.2.1.1
Combine xx and 3434.
y=-x⋅34+1y=−x⋅34+1
Step 1.1.2.1.2
Move 33 to the left of xx.
y=-3x4+1y=−3x4+1
y=-3x4+1y=−3x4+1
y=-3x4+1y=−3x4+1
Step 1.1.3
Write in y=mx+by=mx+b form.
Step 1.1.3.1
Reorder terms.
y=-(34x)+1y=−(34x)+1
Step 1.1.3.2
Remove parentheses.
y=-34x+1y=−34x+1
y=-34x+1y=−34x+1
y=-34x+1y=−34x+1
Step 1.2
Using the slope-intercept form, the slope is -34−34.
m=-34m=−34
m=-34m=−34
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-34mperpendicular=−1−34
Step 3
Step 3.1
Cancel the common factor of 11 and -1−1.
Step 3.1.1
Rewrite 11 as -1(-1)−1(−1).
mperpendicular=--1⋅-1-34mperpendicular=−−1⋅−1−34
Step 3.1.2
Move the negative in front of the fraction.
mperpendicular=134mperpendicular=134
mperpendicular=134mperpendicular=134
Step 3.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1(43)mperpendicular=1(43)
Step 3.3
Multiply 4343 by 11.
mperpendicular=43mperpendicular=43
Step 3.4
Multiply --43−−43.
Step 3.4.1
Multiply -1−1 by -1−1.
mperpendicular=1(43)mperpendicular=1(43)
Step 3.4.2
Multiply 4343 by 11.
mperpendicular=43mperpendicular=43
mperpendicular=43mperpendicular=43
mperpendicular=43mperpendicular=43
Step 4
Step 4.1
Use the slope 4343 and a given point (9,12)(9,12) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(12)=43⋅(x-(9))y−(12)=43⋅(x−(9))
Step 4.2
Simplify the equation and keep it in point-slope form.
y-12=43⋅(x-9)y−12=43⋅(x−9)
y-12=43⋅(x-9)y−12=43⋅(x−9)
Step 5
Step 5.1
Solve for yy.
Step 5.1.1
Simplify 43⋅(x-9)43⋅(x−9).
Step 5.1.1.1
Rewrite.
y-12=0+0+43⋅(x-9)y−12=0+0+43⋅(x−9)
Step 5.1.1.2
Simplify by adding zeros.
y-12=43⋅(x-9)y−12=43⋅(x−9)
Step 5.1.1.3
Apply the distributive property.
y-12=43x+43⋅-9y−12=43x+43⋅−9
Step 5.1.1.4
Combine 4343 and xx.
y-12=4x3+43⋅-9y−12=4x3+43⋅−9
Step 5.1.1.5
Cancel the common factor of 33.
Step 5.1.1.5.1
Factor 33 out of -9−9.
y-12=4x3+43⋅(3(-3))y−12=4x3+43⋅(3(−3))
Step 5.1.1.5.2
Cancel the common factor.
y-12=4x3+43⋅(3⋅-3)
Step 5.1.1.5.3
Rewrite the expression.
y-12=4x3+4⋅-3
y-12=4x3+4⋅-3
Step 5.1.1.6
Multiply 4 by -3.
y-12=4x3-12
y-12=4x3-12
Step 5.1.2
Move all terms not containing y to the right side of the equation.
Step 5.1.2.1
Add 12 to both sides of the equation.
y=4x3-12+12
Step 5.1.2.2
Combine the opposite terms in 4x3-12+12.
Step 5.1.2.2.1
Add -12 and 12.
y=4x3+0
Step 5.1.2.2.2
Add 4x3 and 0.
y=4x3
y=4x3
y=4x3
y=4x3
Step 5.2
Reorder terms.
y=43x
y=43x
Step 6