Enter a problem...
Algebra Examples
Through (8,-5)(8,−5) ; perpendicular to 7y=x-147y=x−14
Step 1
Step 1.1
Divide each term in 7y=x-147y=x−14 by 77.
7y7=x7+-1477y7=x7+−147
Step 1.2
Simplify the left side.
Step 1.2.1
Cancel the common factor of 77.
Step 1.2.1.1
Cancel the common factor.
7y7=x7+-1477y7=x7+−147
Step 1.2.1.2
Divide yy by 11.
y=x7+-147y=x7+−147
y=x7+-147y=x7+−147
y=x7+-147y=x7+−147
Step 1.3
Simplify the right side.
Step 1.3.1
Divide -14−14 by 77.
y=x7-2y=x7−2
y=x7-2y=x7−2
y=x7-2y=x7−2
Step 2
Step 2.1
Rewrite in slope-intercept form.
Step 2.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.1.2
Reorder terms.
y=17x-2y=17x−2
y=17x-2y=17x−2
Step 2.2
Using the slope-intercept form, the slope is 1717.
m=17m=17
m=17m=17
Step 3
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-117mperpendicular=−117
Step 4
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=-(1⋅7)mperpendicular=−(1⋅7)
Step 4.2
Multiply -(1⋅7)−(1⋅7).
Step 4.2.1
Multiply 77 by 11.
mperpendicular=-1⋅7mperpendicular=−1⋅7
Step 4.2.2
Multiply -1−1 by 77.
mperpendicular=-7mperpendicular=−7
mperpendicular=-7mperpendicular=−7
mperpendicular=-7mperpendicular=−7
Step 5
Step 5.1
Use the slope -7−7 and a given point (8,-5)(8,−5) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(-5)=-7⋅(x-(8))y−(−5)=−7⋅(x−(8))
Step 5.2
Simplify the equation and keep it in point-slope form.
y+5=-7⋅(x-8)y+5=−7⋅(x−8)
y+5=-7⋅(x-8)y+5=−7⋅(x−8)
Step 6
Step 6.1
Simplify -7⋅(x-8)−7⋅(x−8).
Step 6.1.1
Rewrite.
y+5=0+0-7⋅(x-8)y+5=0+0−7⋅(x−8)
Step 6.1.2
Simplify by adding zeros.
y+5=-7⋅(x-8)y+5=−7⋅(x−8)
Step 6.1.3
Apply the distributive property.
y+5=-7x-7⋅-8y+5=−7x−7⋅−8
Step 6.1.4
Multiply -7−7 by -8−8.
y+5=-7x+56y+5=−7x+56
y+5=-7x+56y+5=−7x+56
Step 6.2
Move all terms not containing yy to the right side of the equation.
Step 6.2.1
Subtract 55 from both sides of the equation.
y=-7x+56-5y=−7x+56−5
Step 6.2.2
Subtract 55 from 5656.
y=-7x+51y=−7x+51
y=-7x+51y=−7x+51
y=-7x+51y=−7x+51
Step 7