Enter a problem...
Algebra Examples
(5,0),y+1=2(x-3)(5,0),y+1=2(x−3)
Step 1
Step 1.1
Simplify 2(x-3)2(x−3).
Step 1.1.1
Rewrite.
y+1=0+0+2(x-3)y+1=0+0+2(x−3)
Step 1.1.2
Simplify by adding zeros.
y+1=2(x-3)y+1=2(x−3)
Step 1.1.3
Apply the distributive property.
y+1=2x+2⋅-3y+1=2x+2⋅−3
Step 1.1.4
Multiply 22 by -3−3.
y+1=2x-6y+1=2x−6
y+1=2x-6y+1=2x−6
Step 1.2
Move all terms not containing yy to the right side of the equation.
Step 1.2.1
Subtract 11 from both sides of the equation.
y=2x-6-1y=2x−6−1
Step 1.2.2
Subtract 11 from -6−6.
y=2x-7y=2x−7
y=2x-7y=2x−7
y=2x-7y=2x−7
Step 2
Step 2.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 2.2
Using the slope-intercept form, the slope is 22.
m=2m=2
m=2m=2
Step 3
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-12mperpendicular=−12
Step 4
Step 4.1
Use the slope -12−12 and a given point (5,0)(5,0) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(0)=-12⋅(x-(5))y−(0)=−12⋅(x−(5))
Step 4.2
Simplify the equation and keep it in point-slope form.
y+0=-12⋅(x-5)y+0=−12⋅(x−5)
y+0=-12⋅(x-5)y+0=−12⋅(x−5)
Step 5
Step 5.1
Solve for yy.
Step 5.1.1
Add yy and 00.
y=-12⋅(x-5)y=−12⋅(x−5)
Step 5.1.2
Simplify -12⋅(x-5).
Step 5.1.2.1
Apply the distributive property.
y=-12x-12⋅-5
Step 5.1.2.2
Combine x and 12.
y=-x2-12⋅-5
Step 5.1.2.3
Multiply -12⋅-5.
Step 5.1.2.3.1
Multiply -5 by -1.
y=-x2+5(12)
Step 5.1.2.3.2
Combine 5 and 12.
y=-x2+52
y=-x2+52
y=-x2+52
y=-x2+52
Step 5.2
Reorder terms.
y=-(12x)+52
Step 5.3
Remove parentheses.
y=-12x+52
y=-12x+52
Step 6