Algebra Examples

Find the Perpendicular Line (-3,1) ; perpendicular to y=-2/5x-4
(3,1) ; perpendicular to y=25x4
Step 1
Find the slope when y=25x4.
Tap for more steps...
Step 1.1
Rewrite in slope-intercept form.
Tap for more steps...
Step 1.1.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 1.1.2
Simplify the right side.
Tap for more steps...
Step 1.1.2.1
Simplify each term.
Tap for more steps...
Step 1.1.2.1.1
Combine x and 25.
y=x254
Step 1.1.2.1.2
Move 2 to the left of x.
y=2x54
y=2x54
y=2x54
Step 1.1.3
Write in y=mx+b form.
Tap for more steps...
Step 1.1.3.1
Reorder terms.
y=(25x)4
Step 1.1.3.2
Remove parentheses.
y=25x4
y=25x4
y=25x4
Step 1.2
Using the slope-intercept form, the slope is 25.
m=25
m=25
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=125
Step 3
Simplify 125 to find the slope of the perpendicular line.
Tap for more steps...
Step 3.1
Cancel the common factor of 1 and 1.
Tap for more steps...
Step 3.1.1
Rewrite 1 as 1(1).
mperpendicular=1125
Step 3.1.2
Move the negative in front of the fraction.
mperpendicular=125
mperpendicular=125
Step 3.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1(52)
Step 3.3
Multiply 52 by 1.
mperpendicular=52
Step 3.4
Multiply 52.
Tap for more steps...
Step 3.4.1
Multiply 1 by 1.
mperpendicular=1(52)
Step 3.4.2
Multiply 52 by 1.
mperpendicular=52
mperpendicular=52
mperpendicular=52
Step 4
Find the equation of the perpendicular line using the point-slope formula.
Tap for more steps...
Step 4.1
Use the slope 52 and a given point (3,1) to substitute for x1 and y1 in the point-slope form yy1=m(xx1), which is derived from the slope equation m=y2y1x2x1.
y(1)=52(x(3))
Step 4.2
Simplify the equation and keep it in point-slope form.
y1=52(x+3)
y1=52(x+3)
Step 5
Write in y=mx+b form.
Tap for more steps...
Step 5.1
Solve for y.
Tap for more steps...
Step 5.1.1
Simplify 52(x+3).
Tap for more steps...
Step 5.1.1.1
Rewrite.
y1=0+0+52(x+3)
Step 5.1.1.2
Simplify by adding zeros.
y1=52(x+3)
Step 5.1.1.3
Apply the distributive property.
y1=52x+523
Step 5.1.1.4
Combine 52 and x.
y1=5x2+523
Step 5.1.1.5
Multiply 523.
Tap for more steps...
Step 5.1.1.5.1
Combine 52 and 3.
y1=5x2+532
Step 5.1.1.5.2
Multiply 5 by 3.
y1=5x2+152
y1=5x2+152
y1=5x2+152
Step 5.1.2
Move all terms not containing y to the right side of the equation.
Tap for more steps...
Step 5.1.2.1
Add 1 to both sides of the equation.
y=5x2+152+1
Step 5.1.2.2
Write 1 as a fraction with a common denominator.
y=5x2+152+22
Step 5.1.2.3
Combine the numerators over the common denominator.
y=5x2+15+22
Step 5.1.2.4
Add 15 and 2.
y=5x2+172
y=5x2+172
y=5x2+172
Step 5.2
Reorder terms.
y=52x+172
y=52x+172
Step 6
 x2  12  π  xdx