Enter a problem...
Algebra Examples
(−3,1) ; perpendicular to y=−25x−4
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 1.1.2
Simplify the right side.
Step 1.1.2.1
Simplify each term.
Step 1.1.2.1.1
Combine x and 25.
y=−x⋅25−4
Step 1.1.2.1.2
Move 2 to the left of x.
y=−2x5−4
y=−2x5−4
y=−2x5−4
Step 1.1.3
Write in y=mx+b form.
Step 1.1.3.1
Reorder terms.
y=−(25x)−4
Step 1.1.3.2
Remove parentheses.
y=−25x−4
y=−25x−4
y=−25x−4
Step 1.2
Using the slope-intercept form, the slope is −25.
m=−25
m=−25
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=−1−25
Step 3
Step 3.1
Cancel the common factor of 1 and −1.
Step 3.1.1
Rewrite 1 as −1(−1).
mperpendicular=−−1⋅−1−25
Step 3.1.2
Move the negative in front of the fraction.
mperpendicular=125
mperpendicular=125
Step 3.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1(52)
Step 3.3
Multiply 52 by 1.
mperpendicular=52
Step 3.4
Multiply −−52.
Step 3.4.1
Multiply −1 by −1.
mperpendicular=1(52)
Step 3.4.2
Multiply 52 by 1.
mperpendicular=52
mperpendicular=52
mperpendicular=52
Step 4
Step 4.1
Use the slope 52 and a given point (−3,1) to substitute for x1 and y1 in the point-slope form y−y1=m(x−x1), which is derived from the slope equation m=y2−y1x2−x1.
y−(1)=52⋅(x−(−3))
Step 4.2
Simplify the equation and keep it in point-slope form.
y−1=52⋅(x+3)
y−1=52⋅(x+3)
Step 5
Step 5.1
Solve for y.
Step 5.1.1
Simplify 52⋅(x+3).
Step 5.1.1.1
Rewrite.
y−1=0+0+52⋅(x+3)
Step 5.1.1.2
Simplify by adding zeros.
y−1=52⋅(x+3)
Step 5.1.1.3
Apply the distributive property.
y−1=52x+52⋅3
Step 5.1.1.4
Combine 52 and x.
y−1=5x2+52⋅3
Step 5.1.1.5
Multiply 52⋅3.
Step 5.1.1.5.1
Combine 52 and 3.
y−1=5x2+5⋅32
Step 5.1.1.5.2
Multiply 5 by 3.
y−1=5x2+152
y−1=5x2+152
y−1=5x2+152
Step 5.1.2
Move all terms not containing y to the right side of the equation.
Step 5.1.2.1
Add 1 to both sides of the equation.
y=5x2+152+1
Step 5.1.2.2
Write 1 as a fraction with a common denominator.
y=5x2+152+22
Step 5.1.2.3
Combine the numerators over the common denominator.
y=5x2+15+22
Step 5.1.2.4
Add 15 and 2.
y=5x2+172
y=5x2+172
y=5x2+172
Step 5.2
Reorder terms.
y=52x+172
y=52x+172
Step 6