Enter a problem...
Algebra Examples
Passing through (7,-2)(7,−2) and perpendicular to the line whose equation is y=13x+3y=13x+3
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Simplify the right side.
Step 1.1.2.1
Combine 1313 and xx.
y=x3+3y=x3+3
y=x3+3y=x3+3
Step 1.1.3
Reorder terms.
y=13x+3y=13x+3
y=13x+3y=13x+3
Step 1.2
Using the slope-intercept form, the slope is 1313.
m=13m=13
m=13m=13
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-113mperpendicular=−113
Step 3
Step 3.1
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=-(1⋅3)mperpendicular=−(1⋅3)
Step 3.2
Multiply -(1⋅3)−(1⋅3).
Step 3.2.1
Multiply 33 by 11.
mperpendicular=-1⋅3mperpendicular=−1⋅3
Step 3.2.2
Multiply -1−1 by 33.
mperpendicular=-3mperpendicular=−3
mperpendicular=-3mperpendicular=−3
mperpendicular=-3mperpendicular=−3
Step 4
Step 4.1
Use the slope -3−3 and a given point (7,-2)(7,−2) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(-2)=-3⋅(x-(7))y−(−2)=−3⋅(x−(7))
Step 4.2
Simplify the equation and keep it in point-slope form.
y+2=-3⋅(x-7)y+2=−3⋅(x−7)
y+2=-3⋅(x-7)y+2=−3⋅(x−7)
Step 5
Step 5.1
Simplify -3⋅(x-7)−3⋅(x−7).
Step 5.1.1
Rewrite.
y+2=0+0-3⋅(x-7)y+2=0+0−3⋅(x−7)
Step 5.1.2
Simplify by adding zeros.
y+2=-3⋅(x-7)y+2=−3⋅(x−7)
Step 5.1.3
Apply the distributive property.
y+2=-3x-3⋅-7
Step 5.1.4
Multiply -3 by -7.
y+2=-3x+21
y+2=-3x+21
Step 5.2
Move all terms not containing y to the right side of the equation.
Step 5.2.1
Subtract 2 from both sides of the equation.
y=-3x+21-2
Step 5.2.2
Subtract 2 from 21.
y=-3x+19
y=-3x+19
y=-3x+19
Step 6