Enter a problem...
Algebra Examples
y=-4xy=−4x that contains the point (-3,-4)
Step 1
Step 1.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 1.2
Using the slope-intercept form, the slope is -4.
m=-4
m=-4
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-4
Step 3
Step 3.1
Move the negative in front of the fraction.
mperpendicular=14
Step 3.2
Multiply --14.
Step 3.2.1
Multiply -1 by -1.
mperpendicular=1(14)
Step 3.2.2
Multiply 14 by 1.
mperpendicular=14
mperpendicular=14
mperpendicular=14
Step 4
Step 4.1
Use the slope 14 and a given point (-3,-4) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(-4)=14⋅(x-(-3))
Step 4.2
Simplify the equation and keep it in point-slope form.
y+4=14⋅(x+3)
y+4=14⋅(x+3)
Step 5
Step 5.1
Solve for y.
Step 5.1.1
Simplify 14⋅(x+3).
Step 5.1.1.1
Rewrite.
y+4=0+0+14⋅(x+3)
Step 5.1.1.2
Simplify by adding zeros.
y+4=14⋅(x+3)
Step 5.1.1.3
Apply the distributive property.
y+4=14x+14⋅3
Step 5.1.1.4
Combine 14 and x.
y+4=x4+14⋅3
Step 5.1.1.5
Combine 14 and 3.
y+4=x4+34
y+4=x4+34
Step 5.1.2
Move all terms not containing y to the right side of the equation.
Step 5.1.2.1
Subtract 4 from both sides of the equation.
y=x4+34-4
Step 5.1.2.2
To write -4 as a fraction with a common denominator, multiply by 44.
y=x4+34-4⋅44
Step 5.1.2.3
Combine -4 and 44.
y=x4+34+-4⋅44
Step 5.1.2.4
Combine the numerators over the common denominator.
y=x4+3-4⋅44
Step 5.1.2.5
Simplify the numerator.
Step 5.1.2.5.1
Multiply -4 by 4.
y=x4+3-164
Step 5.1.2.5.2
Subtract 16 from 3.
y=x4+-134
y=x4+-134
Step 5.1.2.6
Move the negative in front of the fraction.
y=x4-134
y=x4-134
y=x4-134
Step 5.2
Reorder terms.
y=14x-134
y=14x-134
Step 6