Enter a problem...
Algebra Examples
Passes through (4,-6)(4,−6) Perpendicular to y=12x+2y=12x+2
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Simplify the right side.
Step 1.1.2.1
Combine 1212 and xx.
y=x2+2y=x2+2
y=x2+2y=x2+2
Step 1.1.3
Reorder terms.
y=12x+2y=12x+2
y=12x+2y=12x+2
Step 1.2
Using the slope-intercept form, the slope is 1212.
m=12m=12
m=12m=12
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-112mperpendicular=−112
Step 3
Step 3.1
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=-(1⋅2)mperpendicular=−(1⋅2)
Step 3.2
Multiply -(1⋅2)−(1⋅2).
Step 3.2.1
Multiply 22 by 11.
mperpendicular=-1⋅2mperpendicular=−1⋅2
Step 3.2.2
Multiply -1−1 by 22.
mperpendicular=-2mperpendicular=−2
mperpendicular=-2mperpendicular=−2
mperpendicular=-2mperpendicular=−2
Step 4
Step 4.1
Use the slope -2−2 and a given point (4,-6)(4,−6) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(-6)=-2⋅(x-(4))y−(−6)=−2⋅(x−(4))
Step 4.2
Simplify the equation and keep it in point-slope form.
y+6=-2⋅(x-4)y+6=−2⋅(x−4)
y+6=-2⋅(x-4)y+6=−2⋅(x−4)
Step 5
Step 5.1
Simplify -2⋅(x-4)−2⋅(x−4).
Step 5.1.1
Rewrite.
y+6=0+0-2⋅(x-4)y+6=0+0−2⋅(x−4)
Step 5.1.2
Simplify by adding zeros.
y+6=-2⋅(x-4)y+6=−2⋅(x−4)
Step 5.1.3
Apply the distributive property.
y+6=-2x-2⋅-4
Step 5.1.4
Multiply -2 by -4.
y+6=-2x+8
y+6=-2x+8
Step 5.2
Move all terms not containing y to the right side of the equation.
Step 5.2.1
Subtract 6 from both sides of the equation.
y=-2x+8-6
Step 5.2.2
Subtract 6 from 8.
y=-2x+2
y=-2x+2
y=-2x+2
Step 6