Enter a problem...
Algebra Examples
line y=23x-4y=23x−4 , point (2,-6)(2,−6)
Step 1
Step 1.1
Rewrite in slope-intercept form.
Step 1.1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.1.2
Simplify the right side.
Step 1.1.2.1
Combine 2323 and xx.
y=2x3-4y=2x3−4
y=2x3-4y=2x3−4
Step 1.1.3
Reorder terms.
y=23x-4y=23x−4
y=23x-4y=23x−4
Step 1.2
Using the slope-intercept form, the slope is 2323.
m=23m=23
m=23m=23
Step 2
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-123mperpendicular=−123
Step 3
Step 3.1
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=-(1(32))mperpendicular=−(1(32))
Step 3.2
Multiply 3232 by 11.
mperpendicular=-32mperpendicular=−32
mperpendicular=-32mperpendicular=−32
Step 4
Step 4.1
Use the slope -32−32 and a given point (2,-6)(2,−6) to substitute for x1x1 and y1y1 in the point-slope form y-y1=m(x-x1)y−y1=m(x−x1), which is derived from the slope equation m=y2-y1x2-x1m=y2−y1x2−x1.
y-(-6)=-32⋅(x-(2))y−(−6)=−32⋅(x−(2))
Step 4.2
Simplify the equation and keep it in point-slope form.
y+6=-32⋅(x-2)y+6=−32⋅(x−2)
y+6=-32⋅(x-2)y+6=−32⋅(x−2)
Step 5
Step 5.1
Solve for yy.
Step 5.1.1
Simplify -32⋅(x-2)−32⋅(x−2).
Step 5.1.1.1
Rewrite.
y+6=0+0-32⋅(x-2)y+6=0+0−32⋅(x−2)
Step 5.1.1.2
Simplify terms.
Step 5.1.1.2.1
Apply the distributive property.
y+6=-32x-32⋅-2y+6=−32x−32⋅−2
Step 5.1.1.2.2
Combine xx and 3232.
y+6=-x⋅32-32⋅-2y+6=−x⋅32−32⋅−2
Step 5.1.1.2.3
Cancel the common factor of 22.
Step 5.1.1.2.3.1
Move the leading negative in -32−32 into the numerator.
y+6=-x⋅32+-32⋅-2y+6=−x⋅32+−32⋅−2
Step 5.1.1.2.3.2
Factor 22 out of -2−2.
y+6=-x⋅32+-32⋅(2(-1))y+6=−x⋅32+−32⋅(2(−1))
Step 5.1.1.2.3.3
Cancel the common factor.
y+6=-x⋅32+-32⋅(2⋅-1)
Step 5.1.1.2.3.4
Rewrite the expression.
y+6=-x⋅32-3⋅-1
y+6=-x⋅32-3⋅-1
Step 5.1.1.2.4
Multiply -3 by -1.
y+6=-x⋅32+3
y+6=-x⋅32+3
Step 5.1.1.3
Move 3 to the left of x.
y+6=-3x2+3
y+6=-3x2+3
Step 5.1.2
Move all terms not containing y to the right side of the equation.
Step 5.1.2.1
Subtract 6 from both sides of the equation.
y=-3x2+3-6
Step 5.1.2.2
Subtract 6 from 3.
y=-3x2-3
y=-3x2-3
y=-3x2-3
Step 5.2
Reorder terms.
y=-(32x)-3
Step 5.3
Remove parentheses.
y=-32x-3
y=-32x-3
Step 6