Enter a problem...
Algebra Examples
The line is perpendicular to 3x-y=8 and goes through (-2,7)
Step 1
Step 1.1
Subtract 3x from both sides of the equation.
-y=8-3x
Step 1.2
Divide each term in -y=8-3x by -1 and simplify.
Step 1.2.1
Divide each term in -y=8-3x by -1.
-y-1=8-1+-3x-1
Step 1.2.2
Simplify the left side.
Step 1.2.2.1
Dividing two negative values results in a positive value.
y1=8-1+-3x-1
Step 1.2.2.2
Divide y by 1.
y=8-1+-3x-1
y=8-1+-3x-1
Step 1.2.3
Simplify the right side.
Step 1.2.3.1
Simplify each term.
Step 1.2.3.1.1
Divide 8 by -1.
y=-8+-3x-1
Step 1.2.3.1.2
Move the negative one from the denominator of -3x-1.
y=-8-1⋅(-3x)
Step 1.2.3.1.3
Rewrite -1⋅(-3x) as -(-3x).
y=-8-(-3x)
Step 1.2.3.1.4
Multiply -3 by -1.
y=-8+3x
y=-8+3x
y=-8+3x
y=-8+3x
y=-8+3x
Step 2
Step 2.1
Rewrite in slope-intercept form.
Step 2.1.1
The slope-intercept form is y=mx+b, where m is the slope and b is the y-intercept.
y=mx+b
Step 2.1.2
Reorder -8 and 3x.
y=3x-8
y=3x-8
Step 2.2
Using the slope-intercept form, the slope is 3.
m=3
m=3
Step 3
The equation of a perpendicular line must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-13
Step 4
Step 4.1
Use the slope -13 and a given point (-2,7) to substitute for x1 and y1 in the point-slope form y-y1=m(x-x1), which is derived from the slope equation m=y2-y1x2-x1.
y-(7)=-13⋅(x-(-2))
Step 4.2
Simplify the equation and keep it in point-slope form.
y-7=-13⋅(x+2)
y-7=-13⋅(x+2)
Step 5
Step 5.1
Solve for y.
Step 5.1.1
Simplify -13⋅(x+2).
Step 5.1.1.1
Rewrite.
y-7=0+0-13⋅(x+2)
Step 5.1.1.2
Simplify by adding zeros.
y-7=-13⋅(x+2)
Step 5.1.1.3
Apply the distributive property.
y-7=-13x-13⋅2
Step 5.1.1.4
Combine x and 13.
y-7=-x3-13⋅2
Step 5.1.1.5
Multiply -13⋅2.
Step 5.1.1.5.1
Multiply 2 by -1.
y-7=-x3-2(13)
Step 5.1.1.5.2
Combine -2 and 13.
y-7=-x3+-23
y-7=-x3+-23
Step 5.1.1.6
Move the negative in front of the fraction.
y-7=-x3-23
y-7=-x3-23
Step 5.1.2
Move all terms not containing y to the right side of the equation.
Step 5.1.2.1
Add 7 to both sides of the equation.
y=-x3-23+7
Step 5.1.2.2
To write 7 as a fraction with a common denominator, multiply by 33.
y=-x3-23+7⋅33
Step 5.1.2.3
Combine 7 and 33.
y=-x3-23+7⋅33
Step 5.1.2.4
Combine the numerators over the common denominator.
y=-x3+-2+7⋅33
Step 5.1.2.5
Simplify the numerator.
Step 5.1.2.5.1
Multiply 7 by 3.
y=-x3+-2+213
Step 5.1.2.5.2
Add -2 and 21.
y=-x3+193
y=-x3+193
y=-x3+193
y=-x3+193
Step 5.2
Reorder terms.
y=-(13x)+193
Step 5.3
Remove parentheses.
y=-13x+193
y=-13x+193
Step 6