Enter a problem...
Algebra Examples
f(x)=4x√3-xf(x)=4x√3−x
Step 1
Set 4x√3-x4x√3−x equal to 00.
4x√3-x=04x√3−x=0
Step 2
Step 2.1
To remove the radical on the left side of the equation, square both sides of the equation.
(4x√3-x)2=02(4x√3−x)2=02
Step 2.2
Simplify each side of the equation.
Step 2.2.1
Use n√ax=axnn√ax=axn to rewrite √3-x√3−x as (3-x)12(3−x)12.
(4x(3-x)12)2=02(4x(3−x)12)2=02
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Simplify (4x(3-x)12)2(4x(3−x)12)2.
Step 2.2.2.1.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.2.2.1.1.1
Apply the product rule to 4x(3-x)124x(3−x)12.
(4x)2((3-x)12)2=02(4x)2((3−x)12)2=02
Step 2.2.2.1.1.2
Apply the product rule to 4x4x.
42x2((3-x)12)2=0242x2((3−x)12)2=02
42x2((3-x)12)2=0242x2((3−x)12)2=02
Step 2.2.2.1.2
Raise 44 to the power of 22.
16x2((3-x)12)2=0216x2((3−x)12)2=02
Step 2.2.2.1.3
Multiply the exponents in ((3-x)12)2((3−x)12)2.
Step 2.2.2.1.3.1
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
16x2(3-x)12⋅2=0216x2(3−x)12⋅2=02
Step 2.2.2.1.3.2
Cancel the common factor of 22.
Step 2.2.2.1.3.2.1
Cancel the common factor.
16x2(3-x)12⋅2=02
Step 2.2.2.1.3.2.2
Rewrite the expression.
16x2(3-x)1=02
16x2(3-x)1=02
16x2(3-x)1=02
Step 2.2.2.1.4
Simplify.
16x2(3-x)=02
Step 2.2.2.1.5
Simplify by multiplying through.
Step 2.2.2.1.5.1
Apply the distributive property.
16x2⋅3+16x2(-x)=02
Step 2.2.2.1.5.2
Simplify the expression.
Step 2.2.2.1.5.2.1
Multiply 3 by 16.
48x2+16x2(-x)=02
Step 2.2.2.1.5.2.2
Rewrite using the commutative property of multiplication.
48x2+16⋅-1x2x=02
48x2+16⋅-1x2x=02
48x2+16⋅-1x2x=02
Step 2.2.2.1.6
Simplify each term.
Step 2.2.2.1.6.1
Multiply x2 by x by adding the exponents.
Step 2.2.2.1.6.1.1
Move x.
48x2+16⋅-1(x⋅x2)=02
Step 2.2.2.1.6.1.2
Multiply x by x2.
Step 2.2.2.1.6.1.2.1
Raise x to the power of 1.
48x2+16⋅-1(x1x2)=02
Step 2.2.2.1.6.1.2.2
Use the power rule aman=am+n to combine exponents.
48x2+16⋅-1x1+2=02
48x2+16⋅-1x1+2=02
Step 2.2.2.1.6.1.3
Add 1 and 2.
48x2+16⋅-1x3=02
48x2+16⋅-1x3=02
Step 2.2.2.1.6.2
Multiply 16 by -1.
48x2-16x3=02
48x2-16x3=02
48x2-16x3=02
48x2-16x3=02
Step 2.2.3
Simplify the right side.
Step 2.2.3.1
Raising 0 to any positive power yields 0.
48x2-16x3=0
48x2-16x3=0
48x2-16x3=0
Step 2.3
Solve for x.
Step 2.3.1
Factor 16x2 out of 48x2-16x3.
Step 2.3.1.1
Factor 16x2 out of 48x2.
16x2(3)-16x3=0
Step 2.3.1.2
Factor 16x2 out of -16x3.
16x2(3)+16x2(-x)=0
Step 2.3.1.3
Factor 16x2 out of 16x2(3)+16x2(-x).
16x2(3-x)=0
16x2(3-x)=0
Step 2.3.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x2=0
3-x=0
Step 2.3.3
Set x2 equal to 0 and solve for x.
Step 2.3.3.1
Set x2 equal to 0.
x2=0
Step 2.3.3.2
Solve x2=0 for x.
Step 2.3.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√0
Step 2.3.3.2.2
Simplify ±√0.
Step 2.3.3.2.2.1
Rewrite 0 as 02.
x=±√02
Step 2.3.3.2.2.2
Pull terms out from under the radical, assuming positive real numbers.
x=±0
Step 2.3.3.2.2.3
Plus or minus 0 is 0.
x=0
x=0
x=0
x=0
Step 2.3.4
Set 3-x equal to 0 and solve for x.
Step 2.3.4.1
Set 3-x equal to 0.
3-x=0
Step 2.3.4.2
Solve 3-x=0 for x.
Step 2.3.4.2.1
Subtract 3 from both sides of the equation.
-x=-3
Step 2.3.4.2.2
Divide each term in -x=-3 by -1 and simplify.
Step 2.3.4.2.2.1
Divide each term in -x=-3 by -1.
-x-1=-3-1
Step 2.3.4.2.2.2
Simplify the left side.
Step 2.3.4.2.2.2.1
Dividing two negative values results in a positive value.
x1=-3-1
Step 2.3.4.2.2.2.2
Divide x by 1.
x=-3-1
x=-3-1
Step 2.3.4.2.2.3
Simplify the right side.
Step 2.3.4.2.2.3.1
Divide -3 by -1.
x=3
x=3
x=3
x=3
x=3
Step 2.3.5
The final solution is all the values that make 16x2(3-x)=0 true.
x=0,3
x=0,3
x=0,3
Step 3