Enter a problem...
Algebra Examples
0=35x4-x2+250=35x4−x2+25
Step 1
Rewrite the equation as 35x4-x2+25=035x4−x2+25=0.
35x4-x2+25=035x4−x2+25=0
Step 2
Substitute u=x2u=x2 into the equation. This will make the quadratic formula easy to use.
35u2-u+25=035u2−u+25=0
u=x2u=x2
Step 3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 4
Substitute the values a=35a=35, b=-1b=−1, and c=25c=25 into the quadratic formula and solve for uu.
1±√(-1)2-4⋅(35⋅25)2⋅351±√(−1)2−4⋅(35⋅25)2⋅35
Step 5
Step 5.1
Simplify the numerator.
Step 5.1.1
Raise -1−1 to the power of 22.
u=1±√1-4⋅35⋅252⋅35u=1±√1−4⋅35⋅252⋅35
Step 5.1.2
Multiply -4⋅35⋅25−4⋅35⋅25.
Step 5.1.2.1
Multiply -4−4 by 3535.
u=1±√1-140⋅252⋅35u=1±√1−140⋅252⋅35
Step 5.1.2.2
Multiply -140−140 by 2525.
u=1±√1-35002⋅35u=1±√1−35002⋅35
u=1±√1-35002⋅35u=1±√1−35002⋅35
Step 5.1.3
Subtract 35003500 from 11.
u=1±√-34992⋅35u=1±√−34992⋅35
Step 5.1.4
Rewrite -3499−3499 as -1(3499)−1(3499).
u=1±√-1⋅34992⋅35u=1±√−1⋅34992⋅35
Step 5.1.5
Rewrite √-1(3499)√−1(3499) as √-1⋅√3499√−1⋅√3499.
u=1±√-1⋅√34992⋅35u=1±√−1⋅√34992⋅35
Step 5.1.6
Rewrite √-1 as i.
u=1±i√34992⋅35
u=1±i√34992⋅35
Step 5.2
Multiply 2 by 35.
u=1±i√349970
u=1±i√349970
Step 6
The final answer is the combination of both solutions.
u=1+i√349970,1-i√349970
Step 7
Substitute the real value of u=x2 back into the solved equation.
x2=1+i√349970
(x2)1=1-i√349970
Step 8
Solve the first equation for x.
x2=1+i√349970
Step 9
Step 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√1+i√349970
Step 9.2
Simplify ±√1+i√349970.
Step 9.2.1
Rewrite √1+i√349970 as √1+i√3499√70.
x=±√1+i√3499√70
Step 9.2.2
Multiply √1+i√3499√70 by √70√70.
x=±√1+i√3499√70⋅√70√70
Step 9.2.3
Combine and simplify the denominator.
Step 9.2.3.1
Multiply √1+i√3499√70 by √70√70.
x=±√1+i√3499√70√70√70
Step 9.2.3.2
Raise √70 to the power of 1.
x=±√1+i√3499√70√701√70
Step 9.2.3.3
Raise √70 to the power of 1.
x=±√1+i√3499√70√701√701
Step 9.2.3.4
Use the power rule aman=am+n to combine exponents.
x=±√1+i√3499√70√701+1
Step 9.2.3.5
Add 1 and 1.
x=±√1+i√3499√70√702
Step 9.2.3.6
Rewrite √702 as 70.
Step 9.2.3.6.1
Use n√ax=axn to rewrite √70 as 7012.
x=±√1+i√3499√70(7012)2
Step 9.2.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±√1+i√3499√707012⋅2
Step 9.2.3.6.3
Combine 12 and 2.
x=±√1+i√3499√707022
Step 9.2.3.6.4
Cancel the common factor of 2.
Step 9.2.3.6.4.1
Cancel the common factor.
x=±√1+i√3499√707022
Step 9.2.3.6.4.2
Rewrite the expression.
x=±√1+i√3499√70701
x=±√1+i√3499√70701
Step 9.2.3.6.5
Evaluate the exponent.
x=±√1+i√3499√7070
x=±√1+i√3499√7070
x=±√1+i√3499√7070
Step 9.2.4
Combine using the product rule for radicals.
x=±√(1+i√3499)⋅7070
x=±√(1+i√3499)⋅7070
Step 9.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 9.3.1
First, use the positive value of the ± to find the first solution.
x=√(1+i√3499)⋅7070
Step 9.3.2
Next, use the negative value of the ± to find the second solution.
x=-√(1+i√3499)⋅7070
Step 9.3.3
The complete solution is the result of both the positive and negative portions of the solution.
x=√(1+i√3499)⋅7070,-√(1+i√3499)⋅7070
x=√(1+i√3499)⋅7070,-√(1+i√3499)⋅7070
x=√(1+i√3499)⋅7070,-√(1+i√3499)⋅7070
Step 10
Solve the second equation for x.
(x2)1=1-i√349970
Step 11
Step 11.1
Remove parentheses.
x2=1-i√349970
Step 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√1-i√349970
Step 11.3
Simplify ±√1-i√349970.
Step 11.3.1
Rewrite √1-i√349970 as √1-i√3499√70.
x=±√1-i√3499√70
Step 11.3.2
Multiply √1-i√3499√70 by √70√70.
x=±√1-i√3499√70⋅√70√70
Step 11.3.3
Combine and simplify the denominator.
Step 11.3.3.1
Multiply √1-i√3499√70 by √70√70.
x=±√1-i√3499√70√70√70
Step 11.3.3.2
Raise √70 to the power of 1.
x=±√1-i√3499√70√701√70
Step 11.3.3.3
Raise √70 to the power of 1.
x=±√1-i√3499√70√701√701
Step 11.3.3.4
Use the power rule aman=am+n to combine exponents.
x=±√1-i√3499√70√701+1
Step 11.3.3.5
Add 1 and 1.
x=±√1-i√3499√70√702
Step 11.3.3.6
Rewrite √702 as 70.
Step 11.3.3.6.1
Use n√ax=axn to rewrite √70 as 7012.
x=±√1-i√3499√70(7012)2
Step 11.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±√1-i√3499√707012⋅2
Step 11.3.3.6.3
Combine 12 and 2.
x=±√1-i√3499√707022
Step 11.3.3.6.4
Cancel the common factor of 2.
Step 11.3.3.6.4.1
Cancel the common factor.
x=±√1-i√3499√707022
Step 11.3.3.6.4.2
Rewrite the expression.
x=±√1-i√3499√70701
x=±√1-i√3499√70701
Step 11.3.3.6.5
Evaluate the exponent.
x=±√1-i√3499√7070
x=±√1-i√3499√7070
x=±√1-i√3499√7070
Step 11.3.4
Combine using the product rule for radicals.
x=±√(1-i√3499)⋅7070
x=±√(1-i√3499)⋅7070
Step 11.4
The complete solution is the result of both the positive and negative portions of the solution.
Step 11.4.1
First, use the positive value of the ± to find the first solution.
x=√(1-i√3499)⋅7070
Step 11.4.2
Next, use the negative value of the ± to find the second solution.
x=-√(1-i√3499)⋅7070
Step 11.4.3
The complete solution is the result of both the positive and negative portions of the solution.
x=√(1-i√3499)⋅7070,-√(1-i√3499)⋅7070
x=√(1-i√3499)⋅7070,-√(1-i√3499)⋅7070
x=√(1-i√3499)⋅7070,-√(1-i√3499)⋅7070
Step 12
The solution to 35x4-x2+25=0 is x=√(1+i√3499)⋅7070,-√(1+i√3499)⋅7070,√(1-i√3499)⋅7070,-√(1-i√3499)⋅7070.
x=√(1+i√3499)⋅7070,-√(1+i√3499)⋅7070,√(1-i√3499)⋅7070,-√(1-i√3499)⋅7070
Step 13