Algebra Examples

Find the Roots (Zeros) 0=35x^4-x^2+25
0=35x4-x2+250=35x4x2+25
Step 1
Rewrite the equation as 35x4-x2+25=035x4x2+25=0.
35x4-x2+25=035x4x2+25=0
Step 2
Substitute u=x2u=x2 into the equation. This will make the quadratic formula easy to use.
35u2-u+25=035u2u+25=0
u=x2u=x2
Step 3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 4
Substitute the values a=35a=35, b=-1b=1, and c=25c=25 into the quadratic formula and solve for uu.
1±(-1)2-4(3525)2351±(1)24(3525)235
Step 5
Simplify.
Tap for more steps...
Step 5.1
Simplify the numerator.
Tap for more steps...
Step 5.1.1
Raise -11 to the power of 22.
u=1±1-43525235u=1±143525235
Step 5.1.2
Multiply -4352543525.
Tap for more steps...
Step 5.1.2.1
Multiply -44 by 3535.
u=1±1-14025235u=1±114025235
Step 5.1.2.2
Multiply -140140 by 2525.
u=1±1-3500235u=1±13500235
u=1±1-3500235u=1±13500235
Step 5.1.3
Subtract 35003500 from 11.
u=1±-3499235u=1±3499235
Step 5.1.4
Rewrite -34993499 as -1(3499)1(3499).
u=1±-13499235u=1±13499235
Step 5.1.5
Rewrite -1(3499)1(3499) as -1349913499.
u=1±-13499235u=1±13499235
Step 5.1.6
Rewrite -1 as i.
u=1±i3499235
u=1±i3499235
Step 5.2
Multiply 2 by 35.
u=1±i349970
u=1±i349970
Step 6
The final answer is the combination of both solutions.
u=1+i349970,1-i349970
Step 7
Substitute the real value of u=x2 back into the solved equation.
x2=1+i349970
(x2)1=1-i349970
Step 8
Solve the first equation for x.
x2=1+i349970
Step 9
Solve the equation for x.
Tap for more steps...
Step 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±1+i349970
Step 9.2
Simplify ±1+i349970.
Tap for more steps...
Step 9.2.1
Rewrite 1+i349970 as 1+i349970.
x=±1+i349970
Step 9.2.2
Multiply 1+i349970 by 7070.
x=±1+i3499707070
Step 9.2.3
Combine and simplify the denominator.
Tap for more steps...
Step 9.2.3.1
Multiply 1+i349970 by 7070.
x=±1+i3499707070
Step 9.2.3.2
Raise 70 to the power of 1.
x=±1+i34997070170
Step 9.2.3.3
Raise 70 to the power of 1.
x=±1+i349970701701
Step 9.2.3.4
Use the power rule aman=am+n to combine exponents.
x=±1+i349970701+1
Step 9.2.3.5
Add 1 and 1.
x=±1+i349970702
Step 9.2.3.6
Rewrite 702 as 70.
Tap for more steps...
Step 9.2.3.6.1
Use nax=axn to rewrite 70 as 7012.
x=±1+i349970(7012)2
Step 9.2.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±1+i34997070122
Step 9.2.3.6.3
Combine 12 and 2.
x=±1+i3499707022
Step 9.2.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 9.2.3.6.4.1
Cancel the common factor.
x=±1+i3499707022
Step 9.2.3.6.4.2
Rewrite the expression.
x=±1+i349970701
x=±1+i349970701
Step 9.2.3.6.5
Evaluate the exponent.
x=±1+i34997070
x=±1+i34997070
x=±1+i34997070
Step 9.2.4
Combine using the product rule for radicals.
x=±(1+i3499)7070
x=±(1+i3499)7070
Step 9.3
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 9.3.1
First, use the positive value of the ± to find the first solution.
x=(1+i3499)7070
Step 9.3.2
Next, use the negative value of the ± to find the second solution.
x=-(1+i3499)7070
Step 9.3.3
The complete solution is the result of both the positive and negative portions of the solution.
x=(1+i3499)7070,-(1+i3499)7070
x=(1+i3499)7070,-(1+i3499)7070
x=(1+i3499)7070,-(1+i3499)7070
Step 10
Solve the second equation for x.
(x2)1=1-i349970
Step 11
Solve the equation for x.
Tap for more steps...
Step 11.1
Remove parentheses.
x2=1-i349970
Step 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±1-i349970
Step 11.3
Simplify ±1-i349970.
Tap for more steps...
Step 11.3.1
Rewrite 1-i349970 as 1-i349970.
x=±1-i349970
Step 11.3.2
Multiply 1-i349970 by 7070.
x=±1-i3499707070
Step 11.3.3
Combine and simplify the denominator.
Tap for more steps...
Step 11.3.3.1
Multiply 1-i349970 by 7070.
x=±1-i3499707070
Step 11.3.3.2
Raise 70 to the power of 1.
x=±1-i34997070170
Step 11.3.3.3
Raise 70 to the power of 1.
x=±1-i349970701701
Step 11.3.3.4
Use the power rule aman=am+n to combine exponents.
x=±1-i349970701+1
Step 11.3.3.5
Add 1 and 1.
x=±1-i349970702
Step 11.3.3.6
Rewrite 702 as 70.
Tap for more steps...
Step 11.3.3.6.1
Use nax=axn to rewrite 70 as 7012.
x=±1-i349970(7012)2
Step 11.3.3.6.2
Apply the power rule and multiply exponents, (am)n=amn.
x=±1-i34997070122
Step 11.3.3.6.3
Combine 12 and 2.
x=±1-i3499707022
Step 11.3.3.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 11.3.3.6.4.1
Cancel the common factor.
x=±1-i3499707022
Step 11.3.3.6.4.2
Rewrite the expression.
x=±1-i349970701
x=±1-i349970701
Step 11.3.3.6.5
Evaluate the exponent.
x=±1-i34997070
x=±1-i34997070
x=±1-i34997070
Step 11.3.4
Combine using the product rule for radicals.
x=±(1-i3499)7070
x=±(1-i3499)7070
Step 11.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 11.4.1
First, use the positive value of the ± to find the first solution.
x=(1-i3499)7070
Step 11.4.2
Next, use the negative value of the ± to find the second solution.
x=-(1-i3499)7070
Step 11.4.3
The complete solution is the result of both the positive and negative portions of the solution.
x=(1-i3499)7070,-(1-i3499)7070
x=(1-i3499)7070,-(1-i3499)7070
x=(1-i3499)7070,-(1-i3499)7070
Step 12
The solution to 35x4-x2+25=0 is x=(1+i3499)7070,-(1+i3499)7070,(1-i3499)7070,-(1-i3499)7070.
x=(1+i3499)7070,-(1+i3499)7070,(1-i3499)7070,-(1-i3499)7070
Step 13
 [x2  12  π  xdx ]