Algebra Examples

Find the Roots (Zeros) f(x)=x-x^3
Step 1
Set equal to .
Step 2
Solve for .
Tap for more steps...
Step 2.1
Factor the left side of the equation.
Tap for more steps...
Step 2.1.1
Factor out of .
Tap for more steps...
Step 2.1.1.1
Raise to the power of .
Step 2.1.1.2
Factor out of .
Step 2.1.1.3
Factor out of .
Step 2.1.1.4
Factor out of .
Step 2.1.2
Rewrite as .
Step 2.1.3
Factor.
Tap for more steps...
Step 2.1.3.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.1.3.2
Remove unnecessary parentheses.
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to .
Step 2.4
Set equal to and solve for .
Tap for more steps...
Step 2.4.1
Set equal to .
Step 2.4.2
Subtract from both sides of the equation.
Step 2.5
Set equal to and solve for .
Tap for more steps...
Step 2.5.1
Set equal to .
Step 2.5.2
Solve for .
Tap for more steps...
Step 2.5.2.1
Subtract from both sides of the equation.
Step 2.5.2.2
Divide each term in by and simplify.
Tap for more steps...
Step 2.5.2.2.1
Divide each term in by .
Step 2.5.2.2.2
Simplify the left side.
Tap for more steps...
Step 2.5.2.2.2.1
Dividing two negative values results in a positive value.
Step 2.5.2.2.2.2
Divide by .
Step 2.5.2.2.3
Simplify the right side.
Tap for more steps...
Step 2.5.2.2.3.1
Divide by .
Step 2.6
The final solution is all the values that make true.
Step 3