Enter a problem...
Algebra Examples
f(x)=36+36x-13x2-13x3+x4+x5f(x)=36+36x−13x2−13x3+x4+x5
Step 1
Set 36+36x-13x2-13x3+x4+x536+36x−13x2−13x3+x4+x5 equal to 00.
36+36x-13x2-13x3+x4+x5=036+36x−13x2−13x3+x4+x5=0
Step 2
Step 2.1
Factor the left side of the equation.
Step 2.1.1
Regroup terms.
36-13x2+x4+36x-13x3+x5=036−13x2+x4+36x−13x3+x5=0
Step 2.1.2
Rewrite the middle term.
36+2⋅(6x2)-25x2+x4+36x-13x3+x5=036+2⋅(6x2)−25x2+x4+36x−13x3+x5=0
Step 2.1.3
Rearrange terms.
36+2⋅(6x2)+x4-25x2+36x-13x3+x5=036+2⋅(6x2)+x4−25x2+36x−13x3+x5=0
Step 2.1.4
Factor first three terms by perfect square rule.
(6+x2)2-25x2+36x-13x3+x5=0(6+x2)2−25x2+36x−13x3+x5=0
Step 2.1.5
Rewrite 25x225x2 as (5x)2(5x)2.
(6+x2)2-(5x)2+36x-13x3+x5=0(6+x2)2−(5x)2+36x−13x3+x5=0
Step 2.1.6
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=6+x2a=6+x2 and b=5xb=5x.
(6+x2+5x)(6+x2-(5x))+36x-13x3+x5=0(6+x2+5x)(6+x2−(5x))+36x−13x3+x5=0
Step 2.1.7
Simplify.
Step 2.1.7.1
Factor 6+x2+5x6+x2+5x using the AC method.
Step 2.1.7.1.1
Consider the form x2+bx+cx2+bx+c. Find a pair of integers whose product is cc and whose sum is bb. In this case, whose product is 66 and whose sum is 55.
2,32,3
Step 2.1.7.1.2
Write the factored form using these integers.
(x+2)(x+3)(6+x2-(5x))+36x-13x3+x5=0(x+2)(x+3)(6+x2−(5x))+36x−13x3+x5=0
(x+2)(x+3)(6+x2-(5x))+36x-13x3+x5=0
Step 2.1.7.2
Multiply 5 by -1.
(x+2)(x+3)(6+x2-5x)+36x-13x3+x5=0
(x+2)(x+3)(6+x2-5x)+36x-13x3+x5=0
Step 2.1.8
Factor x out of 36x-13x3+x5.
Step 2.1.8.1
Factor x out of 36x.
(x+2)(x+3)(6+x2-5x)+x⋅36-13x3+x5=0
Step 2.1.8.2
Factor x out of -13x3.
(x+2)(x+3)(6+x2-5x)+x⋅36+x(-13x2)+x5=0
Step 2.1.8.3
Factor x out of x5.
(x+2)(x+3)(6+x2-5x)+x⋅36+x(-13x2)+x⋅x4=0
Step 2.1.8.4
Factor x out of x⋅36+x(-13x2).
(x+2)(x+3)(6+x2-5x)+x⋅(36-13x2)+x⋅x4=0
Step 2.1.8.5
Factor x out of x⋅(36-13x2)+x⋅x4.
(x+2)(x+3)(6+x2-5x)+x(36-13x2+x4)=0
(x+2)(x+3)(6+x2-5x)+x(36-13x2+x4)=0
Step 2.1.9
Rewrite the middle term.
(x+2)(x+3)(6+x2-5x)+x(36+2⋅(6x2)-25x2+x4)=0
Step 2.1.10
Rearrange terms.
(x+2)(x+3)(6+x2-5x)+x(36+2⋅(6x2)+x4-25x2)=0
Step 2.1.11
Factor first three terms by perfect square rule.
(x+2)(x+3)(6+x2-5x)+x((6+x2)2-25x2)=0
Step 2.1.12
Rewrite 25x2 as (5x)2.
(x+2)(x+3)(6+x2-5x)+x((6+x2)2-(5x)2)=0
Step 2.1.13
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=6+x2 and b=5x.
(x+2)(x+3)(6+x2-5x)+x((6+x2+5x)(6+x2-(5x)))=0
Step 2.1.14
Factor.
Step 2.1.14.1
Simplify.
Step 2.1.14.1.1
Factor 6+x2+5x using the AC method.
Step 2.1.14.1.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 6 and whose sum is 5.
2,3
Step 2.1.14.1.1.2
Write the factored form using these integers.
(x+2)(x+3)(6+x2-5x)+x((x+2)(x+3)(6+x2-(5x)))=0
(x+2)(x+3)(6+x2-5x)+x((x+2)(x+3)(6+x2-(5x)))=0
Step 2.1.14.1.2
Multiply 5 by -1.
(x+2)(x+3)(6+x2-5x)+x((x+2)(x+3)(6+x2-5x))=0
(x+2)(x+3)(6+x2-5x)+x((x+2)(x+3)(6+x2-5x))=0
Step 2.1.14.2
Remove unnecessary parentheses.
(x+2)(x+3)(6+x2-5x)+x(x+2)(x+3)(6+x2-5x)=0
(x+2)(x+3)(6+x2-5x)+x(x+2)(x+3)(6+x2-5x)=0
Step 2.1.15
Factor (x+2)(x+3)(6+x2-5x) out of (x+2)(x+3)(6+x2-5x)+x(x+2)(x+3)(6+x2-5x).
Step 2.1.15.1
Factor (x+2)(x+3)(6+x2-5x) out of (x+2)(x+3)(6+x2-5x).
(x+2)(x+3)(6+x2-5x)(1)+x(x+2)(x+3)(6+x2-5x)=0
Step 2.1.15.2
Factor (x+2)(x+3)(6+x2-5x) out of x(x+2)(x+3)(6+x2-5x).
(x+2)(x+3)(6+x2-5x)(1)+(x+2)(x+3)(6+x2-5x)(x)=0
Step 2.1.15.3
Factor (x+2)(x+3)(6+x2-5x) out of (x+2)(x+3)(6+x2-5x)(1)+(x+2)(x+3)(6+x2-5x)(x).
(x+2)(x+3)(6+x2-5x)(1+x)=0
(x+2)(x+3)(6+x2-5x)(1+x)=0
Step 2.1.16
Factor.
Step 2.1.16.1
Factor 6+x2-5x using the AC method.
Step 2.1.16.1.1
Consider the form x2+bx+c. Find a pair of integers whose product is c and whose sum is b. In this case, whose product is 6 and whose sum is -5.
-3,-2
Step 2.1.16.1.2
Write the factored form using these integers.
(x+2)(x+3)((x-3)(x-2))(1+x)=0
(x+2)(x+3)((x-3)(x-2))(1+x)=0
Step 2.1.16.2
Remove unnecessary parentheses.
(x+2)(x+3)(x-3)(x-2)(1+x)=0
(x+2)(x+3)(x-3)(x-2)(1+x)=0
(x+2)(x+3)(x-3)(x-2)(1+x)=0
Step 2.2
If any individual factor on the left side of the equation is equal to 0, the entire expression will be equal to 0.
x+2=0
x+3=0
x-3=0
x-2=0
1+x=0
Step 2.3
Set x+2 equal to 0 and solve for x.
Step 2.3.1
Set x+2 equal to 0.
x+2=0
Step 2.3.2
Subtract 2 from both sides of the equation.
x=-2
x=-2
Step 2.4
Set x+3 equal to 0 and solve for x.
Step 2.4.1
Set x+3 equal to 0.
x+3=0
Step 2.4.2
Subtract 3 from both sides of the equation.
x=-3
x=-3
Step 2.5
Set x-3 equal to 0 and solve for x.
Step 2.5.1
Set x-3 equal to 0.
x-3=0
Step 2.5.2
Add 3 to both sides of the equation.
x=3
x=3
Step 2.6
Set x-2 equal to 0 and solve for x.
Step 2.6.1
Set x-2 equal to 0.
x-2=0
Step 2.6.2
Add 2 to both sides of the equation.
x=2
x=2
Step 2.7
Set 1+x equal to 0 and solve for x.
Step 2.7.1
Set 1+x equal to 0.
1+x=0
Step 2.7.2
Subtract 1 from both sides of the equation.
x=-1
x=-1
Step 2.8
The final solution is all the values that make (x+2)(x+3)(x-3)(x-2)(1+x)=0 true.
x=-2,-3,3,2,-1
x=-2,-3,3,2,-1
Step 3