Algebra Examples

Find the Roots (Zeros) p(x)=2^(5x+1)-8^(2x-3)
p(x)=25x+1-82x-3
Step 1
Set 25x+1-82x-3 equal to 0.
25x+1-82x-3=0
Step 2
Solve for x.
Tap for more steps...
Step 2.1
Move -82x-3 to the right side of the equation by adding it to both sides.
25x+1=82x-3
Step 2.2
Create equivalent expressions in the equation that all have equal bases.
25x+1=23(2x-3)
Step 2.3
Since the bases are the same, then two expressions are only equal if the exponents are also equal.
5x+1=3(2x-3)
Step 2.4
Solve for x.
Tap for more steps...
Step 2.4.1
Simplify 3(2x-3).
Tap for more steps...
Step 2.4.1.1
Rewrite.
5x+1=0+0+3(2x-3)
Step 2.4.1.2
Simplify by adding zeros.
5x+1=3(2x-3)
Step 2.4.1.3
Apply the distributive property.
5x+1=3(2x)+3-3
Step 2.4.1.4
Multiply.
Tap for more steps...
Step 2.4.1.4.1
Multiply 2 by 3.
5x+1=6x+3-3
Step 2.4.1.4.2
Multiply 3 by -3.
5x+1=6x-9
5x+1=6x-9
5x+1=6x-9
Step 2.4.2
Move all terms containing x to the left side of the equation.
Tap for more steps...
Step 2.4.2.1
Subtract 6x from both sides of the equation.
5x+1-6x=-9
Step 2.4.2.2
Subtract 6x from 5x.
-x+1=-9
-x+1=-9
Step 2.4.3
Move all terms not containing x to the right side of the equation.
Tap for more steps...
Step 2.4.3.1
Subtract 1 from both sides of the equation.
-x=-9-1
Step 2.4.3.2
Subtract 1 from -9.
-x=-10
-x=-10
Step 2.4.4
Divide each term in -x=-10 by -1 and simplify.
Tap for more steps...
Step 2.4.4.1
Divide each term in -x=-10 by -1.
-x-1=-10-1
Step 2.4.4.2
Simplify the left side.
Tap for more steps...
Step 2.4.4.2.1
Dividing two negative values results in a positive value.
x1=-10-1
Step 2.4.4.2.2
Divide x by 1.
x=-10-1
x=-10-1
Step 2.4.4.3
Simplify the right side.
Tap for more steps...
Step 2.4.4.3.1
Divide -10 by -1.
x=10
x=10
x=10
x=10
x=10
Step 3
 [x2  12  π  xdx ]