Enter a problem...
Algebra Examples
Step 1
Set equal to .
Step 2
Step 2.1
Factor the left side of the equation.
Step 2.1.1
Regroup terms.
Step 2.1.2
Factor out of .
Step 2.1.2.1
Factor out of .
Step 2.1.2.2
Factor out of .
Step 2.1.2.3
Factor out of .
Step 2.1.3
Rewrite as .
Step 2.1.4
Factor.
Step 2.1.4.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.1.4.2
Remove unnecessary parentheses.
Step 2.1.5
Factor out of .
Step 2.1.5.1
Factor out of .
Step 2.1.5.2
Factor out of .
Step 2.1.5.3
Factor out of .
Step 2.1.5.4
Factor out of .
Step 2.1.5.5
Factor out of .
Step 2.1.5.6
Factor out of .
Step 2.1.5.7
Factor out of .
Step 2.1.6
Factor.
Step 2.1.6.1
Factor using the rational roots test.
Step 2.1.6.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2.1.6.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 2.1.6.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 2.1.6.1.3.1
Substitute into the polynomial.
Step 2.1.6.1.3.2
Raise to the power of .
Step 2.1.6.1.3.3
Multiply by .
Step 2.1.6.1.3.4
Raise to the power of .
Step 2.1.6.1.3.5
Multiply by .
Step 2.1.6.1.3.6
Add and .
Step 2.1.6.1.3.7
Subtract from .
Step 2.1.6.1.3.8
Subtract from .
Step 2.1.6.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 2.1.6.1.5
Divide by .
Step 2.1.6.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | + | + | - |
Step 2.1.6.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||||
+ | - | + | + | + | - |
Step 2.1.6.1.5.3
Multiply the new quotient term by the divisor.
- | |||||||||||||
+ | - | + | + | + | - | ||||||||
- | - |
Step 2.1.6.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||||
+ | - | + | + | + | - | ||||||||
+ | + |
Step 2.1.6.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ |
Step 2.1.6.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + |
Step 2.1.6.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + |
Step 2.1.6.1.5.8
Multiply the new quotient term by the divisor.
- | + | ||||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
+ | + |
Step 2.1.6.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - |
Step 2.1.6.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ |
Step 2.1.6.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | + | ||||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + |
Step 2.1.6.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | |||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + |
Step 2.1.6.1.5.13
Multiply the new quotient term by the divisor.
- | + | + | |||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
+ | + |
Step 2.1.6.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | |||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
- | - |
Step 2.1.6.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | |||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- |
Step 2.1.6.1.5.16
Pull the next terms from the original dividend down into the current dividend.
- | + | + | |||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | - |
Step 2.1.6.1.5.17
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | - | ||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | - |
Step 2.1.6.1.5.18
Multiply the new quotient term by the divisor.
- | + | + | - | ||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
- | - |
Step 2.1.6.1.5.19
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | - | ||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
+ | + |
Step 2.1.6.1.5.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | - | ||||||||||
+ | - | + | + | + | - | ||||||||
+ | + | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
- | - | ||||||||||||
- | - | ||||||||||||
+ | + | ||||||||||||
Step 2.1.6.1.5.21
Since the remander is , the final answer is the quotient.
Step 2.1.6.1.6
Write as a set of factors.
Step 2.1.6.2
Remove unnecessary parentheses.
Step 2.1.7
Factor out of .
Step 2.1.7.1
Factor out of .
Step 2.1.7.2
Factor out of .
Step 2.1.7.3
Factor out of .
Step 2.1.8
Apply the distributive property.
Step 2.1.9
Multiply by by adding the exponents.
Step 2.1.9.1
Multiply by .
Step 2.1.9.1.1
Raise to the power of .
Step 2.1.9.1.2
Use the power rule to combine exponents.
Step 2.1.9.2
Add and .
Step 2.1.10
Move to the left of .
Step 2.1.11
Rewrite as .
Step 2.1.12
Apply the distributive property.
Step 2.1.13
Simplify.
Step 2.1.13.1
Multiply by .
Step 2.1.13.2
Multiply by .
Step 2.1.13.3
Multiply by .
Step 2.1.13.4
Multiply by .
Step 2.1.14
Subtract from .
Step 2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.3
Set equal to and solve for .
Step 2.3.1
Set equal to .
Step 2.3.2
Subtract from both sides of the equation.
Step 2.4
Set equal to and solve for .
Step 2.4.1
Set equal to .
Step 2.4.2
Solve for .
Step 2.4.2.1
Factor the left side of the equation.
Step 2.4.2.1.1
Regroup terms.
Step 2.4.2.1.2
Factor out of .
Step 2.4.2.1.2.1
Factor out of .
Step 2.4.2.1.2.2
Factor out of .
Step 2.4.2.1.2.3
Factor out of .
Step 2.4.2.1.3
Rewrite as .
Step 2.4.2.1.4
Factor.
Step 2.4.2.1.4.1
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 2.4.2.1.4.2
Remove unnecessary parentheses.
Step 2.4.2.1.5
Factor out of .
Step 2.4.2.1.5.1
Factor out of .
Step 2.4.2.1.5.2
Factor out of .
Step 2.4.2.1.5.3
Factor out of .
Step 2.4.2.1.5.4
Factor out of .
Step 2.4.2.1.5.5
Factor out of .
Step 2.4.2.1.6
Factor.
Step 2.4.2.1.6.1
Factor using the rational roots test.
Step 2.4.2.1.6.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2.4.2.1.6.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 2.4.2.1.6.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 2.4.2.1.6.1.3.1
Substitute into the polynomial.
Step 2.4.2.1.6.1.3.2
Raise to the power of .
Step 2.4.2.1.6.1.3.3
Raise to the power of .
Step 2.4.2.1.6.1.3.4
Multiply by .
Step 2.4.2.1.6.1.3.5
Subtract from .
Step 2.4.2.1.6.1.3.6
Add and .
Step 2.4.2.1.6.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 2.4.2.1.6.1.5
Divide by .
Step 2.4.2.1.6.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | - | + | + |
Step 2.4.2.1.6.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | - | + | + |
Step 2.4.2.1.6.1.5.3
Multiply the new quotient term by the divisor.
+ | - | + | + | ||||||||
+ | + |
Step 2.4.2.1.6.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | - | + | + | ||||||||
- | - |
Step 2.4.2.1.6.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | - | + | + | ||||||||
- | - | ||||||||||
- |
Step 2.4.2.1.6.1.5.6
Pull the next terms from the original dividend down into the current dividend.
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Step 2.4.2.1.6.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Step 2.4.2.1.6.1.5.8
Multiply the new quotient term by the divisor.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
- | - |
Step 2.4.2.1.6.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + |
Step 2.4.2.1.6.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ |
Step 2.4.2.1.6.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Step 2.4.2.1.6.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Step 2.4.2.1.6.1.5.13
Multiply the new quotient term by the divisor.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Step 2.4.2.1.6.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Step 2.4.2.1.6.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Step 2.4.2.1.6.1.5.16
Since the remander is , the final answer is the quotient.
Step 2.4.2.1.6.1.6
Write as a set of factors.
Step 2.4.2.1.6.2
Remove unnecessary parentheses.
Step 2.4.2.1.7
Factor out of .
Step 2.4.2.1.7.1
Factor out of .
Step 2.4.2.1.7.2
Factor out of .
Step 2.4.2.1.7.3
Factor out of .
Step 2.4.2.1.8
Apply the distributive property.
Step 2.4.2.1.9
Multiply by .
Step 2.4.2.1.10
Apply the distributive property.
Step 2.4.2.1.11
Simplify.
Step 2.4.2.1.11.1
Multiply by by adding the exponents.
Step 2.4.2.1.11.1.1
Multiply by .
Step 2.4.2.1.11.1.1.1
Raise to the power of .
Step 2.4.2.1.11.1.1.2
Use the power rule to combine exponents.
Step 2.4.2.1.11.1.2
Add and .
Step 2.4.2.1.11.2
Rewrite using the commutative property of multiplication.
Step 2.4.2.1.11.3
Move to the left of .
Step 2.4.2.1.12
Multiply by by adding the exponents.
Step 2.4.2.1.12.1
Move .
Step 2.4.2.1.12.2
Multiply by .
Step 2.4.2.1.13
Add and .
Step 2.4.2.1.14
Reorder terms.
Step 2.4.2.1.15
Factor.
Step 2.4.2.1.15.1
Factor using the rational roots test.
Step 2.4.2.1.15.1.1
If a polynomial function has integer coefficients, then every rational zero will have the form where is a factor of the constant and is a factor of the leading coefficient.
Step 2.4.2.1.15.1.2
Find every combination of . These are the possible roots of the polynomial function.
Step 2.4.2.1.15.1.3
Substitute and simplify the expression. In this case, the expression is equal to so is a root of the polynomial.
Step 2.4.2.1.15.1.3.1
Substitute into the polynomial.
Step 2.4.2.1.15.1.3.2
Raise to the power of .
Step 2.4.2.1.15.1.3.3
Raise to the power of .
Step 2.4.2.1.15.1.3.4
Multiply by .
Step 2.4.2.1.15.1.3.5
Subtract from .
Step 2.4.2.1.15.1.3.6
Multiply by .
Step 2.4.2.1.15.1.3.7
Add and .
Step 2.4.2.1.15.1.3.8
Subtract from .
Step 2.4.2.1.15.1.4
Since is a known root, divide the polynomial by to find the quotient polynomial. This polynomial can then be used to find the remaining roots.
Step 2.4.2.1.15.1.5
Divide by .
Step 2.4.2.1.15.1.5.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | - | + | - |
Step 2.4.2.1.15.1.5.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | + | - |
Step 2.4.2.1.15.1.5.3
Multiply the new quotient term by the divisor.
- | - | + | - | ||||||||
+ | - |
Step 2.4.2.1.15.1.5.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | + | - | ||||||||
- | + |
Step 2.4.2.1.15.1.5.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | + | - | ||||||||
- | + | ||||||||||
- |
Step 2.4.2.1.15.1.5.6
Pull the next terms from the original dividend down into the current dividend.
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Step 2.4.2.1.15.1.5.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + |
Step 2.4.2.1.15.1.5.8
Multiply the new quotient term by the divisor.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
Step 2.4.2.1.15.1.5.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
Step 2.4.2.1.15.1.5.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ |
Step 2.4.2.1.15.1.5.11
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 2.4.2.1.15.1.5.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Step 2.4.2.1.15.1.5.13
Multiply the new quotient term by the divisor.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
Step 2.4.2.1.15.1.5.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
Step 2.4.2.1.15.1.5.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | ||||||||||
- | - | + | - | ||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Step 2.4.2.1.15.1.5.16
Since the remander is , the final answer is the quotient.
Step 2.4.2.1.15.1.6
Write as a set of factors.
Step 2.4.2.1.15.2
Remove unnecessary parentheses.
Step 2.4.2.2
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 2.4.2.3
Set equal to and solve for .
Step 2.4.2.3.1
Set equal to .
Step 2.4.2.3.2
Subtract from both sides of the equation.
Step 2.4.2.4
Set equal to and solve for .
Step 2.4.2.4.1
Set equal to .
Step 2.4.2.4.2
Add to both sides of the equation.
Step 2.4.2.5
Set equal to and solve for .
Step 2.4.2.5.1
Set equal to .
Step 2.4.2.5.2
Solve for .
Step 2.4.2.5.2.1
Use the quadratic formula to find the solutions.
Step 2.4.2.5.2.2
Substitute the values , , and into the quadratic formula and solve for .
Step 2.4.2.5.2.3
Simplify.
Step 2.4.2.5.2.3.1
Simplify the numerator.
Step 2.4.2.5.2.3.1.1
Raise to the power of .
Step 2.4.2.5.2.3.1.2
Multiply .
Step 2.4.2.5.2.3.1.2.1
Multiply by .
Step 2.4.2.5.2.3.1.2.2
Multiply by .
Step 2.4.2.5.2.3.1.3
Subtract from .
Step 2.4.2.5.2.3.1.4
Rewrite as .
Step 2.4.2.5.2.3.1.4.1
Factor out of .
Step 2.4.2.5.2.3.1.4.2
Rewrite as .
Step 2.4.2.5.2.3.1.5
Pull terms out from under the radical.
Step 2.4.2.5.2.3.2
Multiply by .
Step 2.4.2.5.2.3.3
Simplify .
Step 2.4.2.5.2.4
The final answer is the combination of both solutions.
Step 2.4.2.6
The final solution is all the values that make true.
Step 2.5
The final solution is all the values that make true.
Step 3
The result can be shown in multiple forms.
Exact Form:
Decimal Form:
Step 4