Enter a problem...
Algebra Examples
Step 1
Step 1.1
Expand .
Step 1.1.1
Move .
Step 1.1.2
Move .
Step 1.1.3
Move .
Step 1.1.4
Reorder and .
Step 1.2
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | + | + | + | - | + | + |
Step 1.3
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||||||
- | + | + | + | - | + | + |
Step 1.4
Multiply the new quotient term by the divisor.
- | |||||||||||||||
- | + | + | + | - | + | + | |||||||||
+ | + | - |
Step 1.5
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||||||
- | + | + | + | - | + | + | |||||||||
- | - | + |
Step 1.6
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||||||
- | + | + | + | - | + | + | |||||||||
- | - | + | |||||||||||||
- |
Step 1.7
Pull the next term from the original dividend down into the current dividend.
- | |||||||||||||||
- | + | + | + | - | + | + | |||||||||
- | - | + | |||||||||||||
- | + | + |
Step 1.8
Divide the highest order term in the dividend by the highest order term in divisor .
- | + | + | |||||||||||||
- | + | + | + | - | + | + | |||||||||
- | - | + | |||||||||||||
- | + | + |
Step 1.9
Multiply the new quotient term by the divisor.
- | + | + | |||||||||||||
- | + | + | + | - | + | + | |||||||||
- | - | + | |||||||||||||
- | + | + | |||||||||||||
- | + | + |
Step 1.10
The expression needs to be subtracted from the dividend, so change all the signs in
- | + | + | |||||||||||||
- | + | + | + | - | + | + | |||||||||
- | - | + | |||||||||||||
- | + | + | |||||||||||||
+ | - | - |
Step 1.11
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | + | + | |||||||||||||
- | + | + | + | - | + | + | |||||||||
- | - | + | |||||||||||||
- | + | + | |||||||||||||
+ | - | - | |||||||||||||
+ | - |
Step 1.12
The final answer is the quotient plus the remainder over the divisor.
Step 2
Since the last term in the resulting expression is a fraction, the numerator of the fraction is the remainder.