Enter a problem...
Algebra Examples
Step 1
Add to both sides of the equation.
Step 2
Step 2.1
Replace all occurrences of in with .
Step 2.2
Simplify the left side.
Step 2.2.1
Simplify .
Step 2.2.1.1
Simplify each term.
Step 2.2.1.1.1
Apply the distributive property.
Step 2.2.1.1.2
Multiply by .
Step 2.2.1.1.3
Multiply by .
Step 2.2.1.2
Subtract from .
Step 3
Step 3.1
Move all terms to the left side of the equation and simplify.
Step 3.1.1
Add to both sides of the equation.
Step 3.1.2
Add and .
Step 3.2
Use the quadratic formula to find the solutions.
Step 3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4
Simplify.
Step 3.4.1
Simplify the numerator.
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Multiply .
Step 3.4.1.2.1
Multiply by .
Step 3.4.1.2.2
Multiply by .
Step 3.4.1.3
Subtract from .
Step 3.4.1.4
Rewrite as .
Step 3.4.1.5
Rewrite as .
Step 3.4.1.6
Rewrite as .
Step 3.4.1.7
Rewrite as .
Step 3.4.1.7.1
Factor out of .
Step 3.4.1.7.2
Rewrite as .
Step 3.4.1.8
Pull terms out from under the radical.
Step 3.4.1.9
Move to the left of .
Step 3.4.2
Multiply by .
Step 3.4.3
Simplify .
Step 3.5
Simplify the expression to solve for the portion of the .
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply .
Step 3.5.1.2.1
Multiply by .
Step 3.5.1.2.2
Multiply by .
Step 3.5.1.3
Subtract from .
Step 3.5.1.4
Rewrite as .
Step 3.5.1.5
Rewrite as .
Step 3.5.1.6
Rewrite as .
Step 3.5.1.7
Rewrite as .
Step 3.5.1.7.1
Factor out of .
Step 3.5.1.7.2
Rewrite as .
Step 3.5.1.8
Pull terms out from under the radical.
Step 3.5.1.9
Move to the left of .
Step 3.5.2
Multiply by .
Step 3.5.3
Simplify .
Step 3.5.4
Change the to .
Step 3.5.5
Rewrite as .
Step 3.5.6
Factor out of .
Step 3.5.7
Factor out of .
Step 3.5.8
Move the negative in front of the fraction.
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply .
Step 3.6.1.2.1
Multiply by .
Step 3.6.1.2.2
Multiply by .
Step 3.6.1.3
Subtract from .
Step 3.6.1.4
Rewrite as .
Step 3.6.1.5
Rewrite as .
Step 3.6.1.6
Rewrite as .
Step 3.6.1.7
Rewrite as .
Step 3.6.1.7.1
Factor out of .
Step 3.6.1.7.2
Rewrite as .
Step 3.6.1.8
Pull terms out from under the radical.
Step 3.6.1.9
Move to the left of .
Step 3.6.2
Multiply by .
Step 3.6.3
Simplify .
Step 3.6.4
Change the to .
Step 3.6.5
Rewrite as .
Step 3.6.6
Factor out of .
Step 3.6.7
Factor out of .
Step 3.6.8
Move the negative in front of the fraction.
Step 3.7
The final answer is the combination of both solutions.
Step 4
Step 4.1
Replace all occurrences of in with .
Step 4.2
Simplify the right side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Cancel the common factor of .
Step 4.2.1.1.1.1
Move the leading negative in into the numerator.
Step 4.2.1.1.1.2
Cancel the common factor.
Step 4.2.1.1.1.3
Rewrite the expression.
Step 4.2.1.1.2
Apply the distributive property.
Step 4.2.1.1.3
Multiply by .
Step 4.2.1.1.4
Multiply .
Step 4.2.1.1.4.1
Multiply by .
Step 4.2.1.1.4.2
Multiply by .
Step 4.2.1.2
Subtract from .
Step 5
Step 5.1
Replace all occurrences of in with .
Step 5.2
Simplify the right side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify each term.
Step 5.2.1.1.1
Cancel the common factor of .
Step 5.2.1.1.1.1
Move the leading negative in into the numerator.
Step 5.2.1.1.1.2
Cancel the common factor.
Step 5.2.1.1.1.3
Rewrite the expression.
Step 5.2.1.1.2
Apply the distributive property.
Step 5.2.1.1.3
Multiply by .
Step 5.2.1.2
Subtract from .
Step 6
List all of the solutions.
Step 7