Enter a problem...
Algebra Examples
Step 1
Add to both sides of the equation.
Step 2
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 3
Step 3.1
Use to rewrite as .
Step 3.2
Simplify the left side.
Step 3.2.1
Simplify .
Step 3.2.1.1
Multiply the exponents in .
Step 3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.1.2
Simplify.
Step 3.3
Simplify the right side.
Step 3.3.1
Rewrite as .
Step 3.3.1.1
Use to rewrite as .
Step 3.3.1.2
Apply the power rule and multiply exponents, .
Step 3.3.1.3
Combine and .
Step 3.3.1.4
Cancel the common factor of .
Step 3.3.1.4.1
Cancel the common factor.
Step 3.3.1.4.2
Rewrite the expression.
Step 3.3.1.5
Simplify.
Step 4
Step 4.1
Move all terms containing to the left side of the equation.
Step 4.1.1
Subtract from both sides of the equation.
Step 4.1.2
Subtract from .
Step 4.2
Factor by grouping.
Step 4.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 4.2.1.1
Factor out of .
Step 4.2.1.2
Rewrite as plus
Step 4.2.1.3
Apply the distributive property.
Step 4.2.2
Factor out the greatest common factor from each group.
Step 4.2.2.1
Group the first two terms and the last two terms.
Step 4.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 4.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 4.3
If any individual factor on the left side of the equation is equal to , the entire expression will be equal to .
Step 4.4
Set equal to and solve for .
Step 4.4.1
Set equal to .
Step 4.4.2
Solve for .
Step 4.4.2.1
Subtract from both sides of the equation.
Step 4.4.2.2
Divide each term in by and simplify.
Step 4.4.2.2.1
Divide each term in by .
Step 4.4.2.2.2
Simplify the left side.
Step 4.4.2.2.2.1
Cancel the common factor of .
Step 4.4.2.2.2.1.1
Cancel the common factor.
Step 4.4.2.2.2.1.2
Divide by .
Step 4.4.2.2.3
Simplify the right side.
Step 4.4.2.2.3.1
Move the negative in front of the fraction.
Step 4.5
Set equal to and solve for .
Step 4.5.1
Set equal to .
Step 4.5.2
Add to both sides of the equation.
Step 4.6
The final solution is all the values that make true.
Step 5
The result can be shown in multiple forms.
Exact Form:
Decimal Form: