Algebra Examples

Find the Inverse f(x)=2x^2-8x+1 , x>=2
f(x)=2x2-8x+1f(x)=2x28x+1 , x2x2
Step 1
Find the range of the given function.
Tap for more steps...
Step 1.1
The range is the set of all valid yy values. Use the graph to find the range.
[-7,)[7,)
Step 1.2
Convert [-7,)[7,) to an inequality.
y-7y7
y-7y7
Step 2
Find the inverse.
Tap for more steps...
Step 2.1
Interchange the variables.
x=2y2-8y+1x=2y28y+1
Step 2.2
Solve for yy.
Tap for more steps...
Step 2.2.1
Rewrite the equation as 2y2-8y+1=x2y28y+1=x.
2y2-8y+1=x2y28y+1=x
Step 2.2.2
Subtract xx from both sides of the equation.
2y2-8y+1-x=02y28y+1x=0
Step 2.2.3
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2ab±b24(ac)2a
Step 2.2.4
Substitute the values a=2a=2, b=-8b=8, and c=1-xc=1x into the quadratic formula and solve for yy.
8±(-8)2-4(2(1-x))228±(8)24(2(1x))22
Step 2.2.5
Simplify.
Tap for more steps...
Step 2.2.5.1
Simplify the numerator.
Tap for more steps...
Step 2.2.5.1.1
Raise -88 to the power of 22.
y=8±64-42(1-x)22y=8±6442(1x)22
Step 2.2.5.1.2
Multiply -44 by 22.
y=8±64-8(1-x)22y=8±648(1x)22
Step 2.2.5.1.3
Apply the distributive property.
y=8±64-81-8(-x)22y=8±64818(x)22
Step 2.2.5.1.4
Multiply -88 by 11.
y=8±64-8-8(-x)22y=8±6488(x)22
Step 2.2.5.1.5
Multiply -11 by -88.
y=8±64-8+8x22y=8±648+8x22
Step 2.2.5.1.6
Subtract 88 from 6464.
y=8±56+8x22y=8±56+8x22
Step 2.2.5.1.7
Factor 88 out of 56+8x56+8x.
Tap for more steps...
Step 2.2.5.1.7.1
Factor 88 out of 5656.
y=8±87+8x22y=8±87+8x22
Step 2.2.5.1.7.2
Factor 88 out of 87+8x87+8x.
y=8±8(7+x)22y=8±8(7+x)22
y=8±8(7+x)22y=8±8(7+x)22
Step 2.2.5.1.8
Rewrite 8(7+x)8(7+x) as 22(2(7+x))22(2(7+x)).
Tap for more steps...
Step 2.2.5.1.8.1
Factor 44 out of 88.
y=8±4(2)(7+x)22y=8±4(2)(7+x)22
Step 2.2.5.1.8.2
Rewrite 44 as 2222.
y=8±22(2(7+x))22y=8±22(2(7+x))22
Step 2.2.5.1.8.3
Add parentheses.
y=8±22(2(7+x))22y=8±22(2(7+x))22
y=8±22(2(7+x))22y=8±22(2(7+x))22
Step 2.2.5.1.9
Pull terms out from under the radical.
y=8±22(7+x)22y=8±22(7+x)22
y=8±22(7+x)22y=8±22(7+x)22
Step 2.2.5.2
Multiply 22 by 22.
y=8±22(7+x)4y=8±22(7+x)4
Step 2.2.5.3
Simplify 8±22(7+x)48±22(7+x)4.
y=4±2(7+x)2y=4±2(7+x)2
y=4±2(7+x)2y=4±2(7+x)2
Step 2.2.6
Simplify the expression to solve for the ++ portion of the ±±.
Tap for more steps...
Step 2.2.6.1
Simplify the numerator.
Tap for more steps...
Step 2.2.6.1.1
Raise -88 to the power of 22.
y=8±64-42(1-x)22y=8±6442(1x)22
Step 2.2.6.1.2
Multiply -44 by 22.
y=8±64-8(1-x)22y=8±648(1x)22
Step 2.2.6.1.3
Apply the distributive property.
y=8±64-81-8(-x)22y=8±64818(x)22
Step 2.2.6.1.4
Multiply -88 by 11.
y=8±64-8-8(-x)22y=8±6488(x)22
Step 2.2.6.1.5
Multiply -11 by -88.
y=8±64-8+8x22y=8±648+8x22
Step 2.2.6.1.6
Subtract 88 from 6464.
y=8±56+8x22y=8±56+8x22
Step 2.2.6.1.7
Factor 88 out of 56+8x56+8x.
Tap for more steps...
Step 2.2.6.1.7.1
Factor 88 out of 5656.
y=8±87+8x22y=8±87+8x22
Step 2.2.6.1.7.2
Factor 88 out of 87+8x87+8x.
y=8±8(7+x)22y=8±8(7+x)22
y=8±8(7+x)22y=8±8(7+x)22
Step 2.2.6.1.8
Rewrite 8(7+x)8(7+x) as 22(2(7+x))22(2(7+x)).
Tap for more steps...
Step 2.2.6.1.8.1
Factor 44 out of 88.
y=8±4(2)(7+x)22y=8±4(2)(7+x)22
Step 2.2.6.1.8.2
Rewrite 44 as 2222.
y=8±22(2(7+x))22y=8±22(2(7+x))22
Step 2.2.6.1.8.3
Add parentheses.
y=8±22(2(7+x))22y=8±22(2(7+x))22
y=8±22(2(7+x))22y=8±22(2(7+x))22
Step 2.2.6.1.9
Pull terms out from under the radical.
y=8±22(7+x)22y=8±22(7+x)22
y=8±22(7+x)22y=8±22(7+x)22
Step 2.2.6.2
Multiply 22 by 22.
y=8±22(7+x)4y=8±22(7+x)4
Step 2.2.6.3
Simplify 8±22(7+x)4.
y=4±2(7+x)2
Step 2.2.6.4
Change the ± to +.
y=4+2(7+x)2
y=4+2(7+x)2
Step 2.2.7
Simplify the expression to solve for the - portion of the ±.
Tap for more steps...
Step 2.2.7.1
Simplify the numerator.
Tap for more steps...
Step 2.2.7.1.1
Raise -8 to the power of 2.
y=8±64-42(1-x)22
Step 2.2.7.1.2
Multiply -4 by 2.
y=8±64-8(1-x)22
Step 2.2.7.1.3
Apply the distributive property.
y=8±64-81-8(-x)22
Step 2.2.7.1.4
Multiply -8 by 1.
y=8±64-8-8(-x)22
Step 2.2.7.1.5
Multiply -1 by -8.
y=8±64-8+8x22
Step 2.2.7.1.6
Subtract 8 from 64.
y=8±56+8x22
Step 2.2.7.1.7
Factor 8 out of 56+8x.
Tap for more steps...
Step 2.2.7.1.7.1
Factor 8 out of 56.
y=8±87+8x22
Step 2.2.7.1.7.2
Factor 8 out of 87+8x.
y=8±8(7+x)22
y=8±8(7+x)22
Step 2.2.7.1.8
Rewrite 8(7+x) as 22(2(7+x)).
Tap for more steps...
Step 2.2.7.1.8.1
Factor 4 out of 8.
y=8±4(2)(7+x)22
Step 2.2.7.1.8.2
Rewrite 4 as 22.
y=8±22(2(7+x))22
Step 2.2.7.1.8.3
Add parentheses.
y=8±22(2(7+x))22
y=8±22(2(7+x))22
Step 2.2.7.1.9
Pull terms out from under the radical.
y=8±22(7+x)22
y=8±22(7+x)22
Step 2.2.7.2
Multiply 2 by 2.
y=8±22(7+x)4
Step 2.2.7.3
Simplify 8±22(7+x)4.
y=4±2(7+x)2
Step 2.2.7.4
Change the ± to -.
y=4-2(7+x)2
y=4-2(7+x)2
Step 2.2.8
The final answer is the combination of both solutions.
y=4+2(7+x)2
y=4-2(7+x)2
y=4+2(7+x)2
y=4-2(7+x)2
Step 2.3
Replace y with f-1(x) to show the final answer.
f-1(x)=4+2(7+x)2,4-2(7+x)2
f-1(x)=4+2(7+x)2,4-2(7+x)2
Step 3
Find the inverse using the domain and the range of the original function.
f-1(x)=4+2(7+x)2,x-7
Step 4
 [x2  12  π  xdx ]