Enter a problem...
Algebra Examples
,
Step 1
Step 1.1
The range is the set of all valid values. Use the graph to find the range.
Step 1.2
Convert to an inequality.
Step 2
Step 2.1
Interchange the variables.
Step 2.2
Solve for .
Step 2.2.1
Rewrite the equation as .
Step 2.2.2
Subtract from both sides of the equation.
Step 2.2.3
Use the quadratic formula to find the solutions.
Step 2.2.4
Substitute the values , , and into the quadratic formula and solve for .
Step 2.2.5
Simplify.
Step 2.2.5.1
Simplify the numerator.
Step 2.2.5.1.1
Raise to the power of .
Step 2.2.5.1.2
Multiply by .
Step 2.2.5.1.3
Apply the distributive property.
Step 2.2.5.1.4
Multiply by .
Step 2.2.5.1.5
Multiply by .
Step 2.2.5.1.6
Subtract from .
Step 2.2.5.1.7
Factor out of .
Step 2.2.5.1.7.1
Factor out of .
Step 2.2.5.1.7.2
Factor out of .
Step 2.2.5.1.8
Rewrite as .
Step 2.2.5.1.8.1
Factor out of .
Step 2.2.5.1.8.2
Rewrite as .
Step 2.2.5.1.8.3
Add parentheses.
Step 2.2.5.1.9
Pull terms out from under the radical.
Step 2.2.5.2
Multiply by .
Step 2.2.5.3
Simplify .
Step 2.2.6
Simplify the expression to solve for the portion of the .
Step 2.2.6.1
Simplify the numerator.
Step 2.2.6.1.1
Raise to the power of .
Step 2.2.6.1.2
Multiply by .
Step 2.2.6.1.3
Apply the distributive property.
Step 2.2.6.1.4
Multiply by .
Step 2.2.6.1.5
Multiply by .
Step 2.2.6.1.6
Subtract from .
Step 2.2.6.1.7
Factor out of .
Step 2.2.6.1.7.1
Factor out of .
Step 2.2.6.1.7.2
Factor out of .
Step 2.2.6.1.8
Rewrite as .
Step 2.2.6.1.8.1
Factor out of .
Step 2.2.6.1.8.2
Rewrite as .
Step 2.2.6.1.8.3
Add parentheses.
Step 2.2.6.1.9
Pull terms out from under the radical.
Step 2.2.6.2
Multiply by .
Step 2.2.6.3
Simplify .
Step 2.2.6.4
Change the to .
Step 2.2.7
Simplify the expression to solve for the portion of the .
Step 2.2.7.1
Simplify the numerator.
Step 2.2.7.1.1
Raise to the power of .
Step 2.2.7.1.2
Multiply by .
Step 2.2.7.1.3
Apply the distributive property.
Step 2.2.7.1.4
Multiply by .
Step 2.2.7.1.5
Multiply by .
Step 2.2.7.1.6
Subtract from .
Step 2.2.7.1.7
Factor out of .
Step 2.2.7.1.7.1
Factor out of .
Step 2.2.7.1.7.2
Factor out of .
Step 2.2.7.1.8
Rewrite as .
Step 2.2.7.1.8.1
Factor out of .
Step 2.2.7.1.8.2
Rewrite as .
Step 2.2.7.1.8.3
Add parentheses.
Step 2.2.7.1.9
Pull terms out from under the radical.
Step 2.2.7.2
Multiply by .
Step 2.2.7.3
Simplify .
Step 2.2.7.4
Change the to .
Step 2.2.8
The final answer is the combination of both solutions.
Step 2.3
Replace with to show the final answer.
Step 3
Find the inverse using the domain and the range of the original function.
Step 4