Enter a problem...
Algebra Examples
f(x)=2x2-8x+1f(x)=2x2−8x+1 , x≥2x≥2
Step 1
Step 1.1
The range is the set of all valid yy values. Use the graph to find the range.
[-7,∞)[−7,∞)
Step 1.2
Convert [-7,∞)[−7,∞) to an inequality.
y≥-7y≥−7
y≥-7y≥−7
Step 2
Step 2.1
Interchange the variables.
x=2y2-8y+1x=2y2−8y+1
Step 2.2
Solve for yy.
Step 2.2.1
Rewrite the equation as 2y2-8y+1=x2y2−8y+1=x.
2y2-8y+1=x2y2−8y+1=x
Step 2.2.2
Subtract xx from both sides of the equation.
2y2-8y+1-x=02y2−8y+1−x=0
Step 2.2.3
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a−b±√b2−4(ac)2a
Step 2.2.4
Substitute the values a=2a=2, b=-8b=−8, and c=1-xc=1−x into the quadratic formula and solve for yy.
8±√(-8)2-4⋅(2⋅(1-x))2⋅28±√(−8)2−4⋅(2⋅(1−x))2⋅2
Step 2.2.5
Simplify.
Step 2.2.5.1
Simplify the numerator.
Step 2.2.5.1.1
Raise -8−8 to the power of 22.
y=8±√64-4⋅2⋅(1-x)2⋅2y=8±√64−4⋅2⋅(1−x)2⋅2
Step 2.2.5.1.2
Multiply -4−4 by 22.
y=8±√64-8⋅(1-x)2⋅2y=8±√64−8⋅(1−x)2⋅2
Step 2.2.5.1.3
Apply the distributive property.
y=8±√64-8⋅1-8(-x)2⋅2y=8±√64−8⋅1−8(−x)2⋅2
Step 2.2.5.1.4
Multiply -8−8 by 11.
y=8±√64-8-8(-x)2⋅2y=8±√64−8−8(−x)2⋅2
Step 2.2.5.1.5
Multiply -1−1 by -8−8.
y=8±√64-8+8x2⋅2y=8±√64−8+8x2⋅2
Step 2.2.5.1.6
Subtract 88 from 6464.
y=8±√56+8x2⋅2y=8±√56+8x2⋅2
Step 2.2.5.1.7
Factor 88 out of 56+8x56+8x.
Step 2.2.5.1.7.1
Factor 88 out of 5656.
y=8±√8⋅7+8x2⋅2y=8±√8⋅7+8x2⋅2
Step 2.2.5.1.7.2
Factor 88 out of 8⋅7+8x8⋅7+8x.
y=8±√8(7+x)2⋅2y=8±√8(7+x)2⋅2
y=8±√8(7+x)2⋅2y=8±√8(7+x)2⋅2
Step 2.2.5.1.8
Rewrite 8(7+x)8(7+x) as 22⋅(2(7+x))22⋅(2(7+x)).
Step 2.2.5.1.8.1
Factor 44 out of 88.
y=8±√4(2)(7+x)2⋅2y=8±√4(2)(7+x)2⋅2
Step 2.2.5.1.8.2
Rewrite 44 as 2222.
y=8±√22⋅(2(7+x))2⋅2y=8±√22⋅(2(7+x))2⋅2
Step 2.2.5.1.8.3
Add parentheses.
y=8±√22⋅(2(7+x))2⋅2y=8±√22⋅(2(7+x))2⋅2
y=8±√22⋅(2(7+x))2⋅2y=8±√22⋅(2(7+x))2⋅2
Step 2.2.5.1.9
Pull terms out from under the radical.
y=8±2√2(7+x)2⋅2y=8±2√2(7+x)2⋅2
y=8±2√2(7+x)2⋅2y=8±2√2(7+x)2⋅2
Step 2.2.5.2
Multiply 22 by 22.
y=8±2√2(7+x)4y=8±2√2(7+x)4
Step 2.2.5.3
Simplify 8±2√2(7+x)48±2√2(7+x)4.
y=4±√2(7+x)2y=4±√2(7+x)2
y=4±√2(7+x)2y=4±√2(7+x)2
Step 2.2.6
Simplify the expression to solve for the ++ portion of the ±±.
Step 2.2.6.1
Simplify the numerator.
Step 2.2.6.1.1
Raise -8−8 to the power of 22.
y=8±√64-4⋅2⋅(1-x)2⋅2y=8±√64−4⋅2⋅(1−x)2⋅2
Step 2.2.6.1.2
Multiply -4−4 by 22.
y=8±√64-8⋅(1-x)2⋅2y=8±√64−8⋅(1−x)2⋅2
Step 2.2.6.1.3
Apply the distributive property.
y=8±√64-8⋅1-8(-x)2⋅2y=8±√64−8⋅1−8(−x)2⋅2
Step 2.2.6.1.4
Multiply -8−8 by 11.
y=8±√64-8-8(-x)2⋅2y=8±√64−8−8(−x)2⋅2
Step 2.2.6.1.5
Multiply -1−1 by -8−8.
y=8±√64-8+8x2⋅2y=8±√64−8+8x2⋅2
Step 2.2.6.1.6
Subtract 88 from 6464.
y=8±√56+8x2⋅2y=8±√56+8x2⋅2
Step 2.2.6.1.7
Factor 88 out of 56+8x56+8x.
Step 2.2.6.1.7.1
Factor 88 out of 5656.
y=8±√8⋅7+8x2⋅2y=8±√8⋅7+8x2⋅2
Step 2.2.6.1.7.2
Factor 88 out of 8⋅7+8x8⋅7+8x.
y=8±√8(7+x)2⋅2y=8±√8(7+x)2⋅2
y=8±√8(7+x)2⋅2y=8±√8(7+x)2⋅2
Step 2.2.6.1.8
Rewrite 8(7+x)8(7+x) as 22⋅(2(7+x))22⋅(2(7+x)).
Step 2.2.6.1.8.1
Factor 44 out of 88.
y=8±√4(2)(7+x)2⋅2y=8±√4(2)(7+x)2⋅2
Step 2.2.6.1.8.2
Rewrite 44 as 2222.
y=8±√22⋅(2(7+x))2⋅2y=8±√22⋅(2(7+x))2⋅2
Step 2.2.6.1.8.3
Add parentheses.
y=8±√22⋅(2(7+x))2⋅2y=8±√22⋅(2(7+x))2⋅2
y=8±√22⋅(2(7+x))2⋅2y=8±√22⋅(2(7+x))2⋅2
Step 2.2.6.1.9
Pull terms out from under the radical.
y=8±2√2(7+x)2⋅2y=8±2√2(7+x)2⋅2
y=8±2√2(7+x)2⋅2y=8±2√2(7+x)2⋅2
Step 2.2.6.2
Multiply 22 by 22.
y=8±2√2(7+x)4y=8±2√2(7+x)4
Step 2.2.6.3
Simplify 8±2√2(7+x)4.
y=4±√2(7+x)2
Step 2.2.6.4
Change the ± to +.
y=4+√2(7+x)2
y=4+√2(7+x)2
Step 2.2.7
Simplify the expression to solve for the - portion of the ±.
Step 2.2.7.1
Simplify the numerator.
Step 2.2.7.1.1
Raise -8 to the power of 2.
y=8±√64-4⋅2⋅(1-x)2⋅2
Step 2.2.7.1.2
Multiply -4 by 2.
y=8±√64-8⋅(1-x)2⋅2
Step 2.2.7.1.3
Apply the distributive property.
y=8±√64-8⋅1-8(-x)2⋅2
Step 2.2.7.1.4
Multiply -8 by 1.
y=8±√64-8-8(-x)2⋅2
Step 2.2.7.1.5
Multiply -1 by -8.
y=8±√64-8+8x2⋅2
Step 2.2.7.1.6
Subtract 8 from 64.
y=8±√56+8x2⋅2
Step 2.2.7.1.7
Factor 8 out of 56+8x.
Step 2.2.7.1.7.1
Factor 8 out of 56.
y=8±√8⋅7+8x2⋅2
Step 2.2.7.1.7.2
Factor 8 out of 8⋅7+8x.
y=8±√8(7+x)2⋅2
y=8±√8(7+x)2⋅2
Step 2.2.7.1.8
Rewrite 8(7+x) as 22⋅(2(7+x)).
Step 2.2.7.1.8.1
Factor 4 out of 8.
y=8±√4(2)(7+x)2⋅2
Step 2.2.7.1.8.2
Rewrite 4 as 22.
y=8±√22⋅(2(7+x))2⋅2
Step 2.2.7.1.8.3
Add parentheses.
y=8±√22⋅(2(7+x))2⋅2
y=8±√22⋅(2(7+x))2⋅2
Step 2.2.7.1.9
Pull terms out from under the radical.
y=8±2√2(7+x)2⋅2
y=8±2√2(7+x)2⋅2
Step 2.2.7.2
Multiply 2 by 2.
y=8±2√2(7+x)4
Step 2.2.7.3
Simplify 8±2√2(7+x)4.
y=4±√2(7+x)2
Step 2.2.7.4
Change the ± to -.
y=4-√2(7+x)2
y=4-√2(7+x)2
Step 2.2.8
The final answer is the combination of both solutions.
y=4+√2(7+x)2
y=4-√2(7+x)2
y=4+√2(7+x)2
y=4-√2(7+x)2
Step 2.3
Replace y with f-1(x) to show the final answer.
f-1(x)=4+√2(7+x)2,4-√2(7+x)2
f-1(x)=4+√2(7+x)2,4-√2(7+x)2
Step 3
Find the inverse using the domain and the range of the original function.
f-1(x)=4+√2(7+x)2,x≥-7
Step 4